2025.findings-emnlp.873@ACL

Total: 1

#1 Hallucination Detection in Structured Query Generation via LLM Self-Debating [PDF] [Copy] [Kimi1] [REL]

Authors: Miaoran Li, Jiangning Chen, Minghua Xu, Xiaolong Wang

Hallucination remains a key challenge in applying large language models (LLMs) to structured query generation, especially for semi-private or domain-specific languages underrepresented in public training data. In this work, we focus on hallucination detection in these low-resource structured language scenarios, using Splunk Search Processing Language (SPL) as a representative case study. We start from analyzing real-world SPL generation to define hallucination in this context and introduce a comprehensive taxonomy. To enhance detection performance, we propose the Self-Debating framework, which prompts an LLM to generate contrastive explanations from opposing perspectives before rendering a final consistency judgment. We also construct a synthetic benchmark, SynSPL, to support systematic evaluation of hallucination detection in SPL generation. Experimental results show that Self-Debating consistently outperforms LLM-as-a-Judge baselines with zero-shot and chain-of-thought (CoT) prompts in SPL hallucination detection across different LLMs, yielding 5–10% relative gains in hallucination F1 scores on both real and synthetic datasets, and up to 260% improvement for LLaMA-3.1–8B. Besides hallucination detection on SPL, Self-Debating also achieves excellent performance on the FaithBench benchmark for summarization hallucination, demonstrating the strong generalization ability of Self-Debating, with OpenAI o1-mini achieving state-of-the-art performance. All these results consistently demonstrate the strong robustness and wide generalizability of Self-Debating.

Subject: EMNLP.2025 - Findings