2025.naacl-long.187@ACL

Total: 1

#1 CluSanT: Differentially Private and Semantically Coherent Text Sanitization [PDF] [Copy] [Kimi] [REL]

Authors: Ahmed Musa Awon, Yun Lu, Shera Potka, Alex Thomo

We introduce CluSanT, a novel text sanitization framework based on Metric Local Differential Privacy (MLDP). Our framework consists of three components: token clustering, cluster embedding, and token sanitization. For the first, CluSanT employs Large Language Models (LLMs) to create—a set of potential substitute tokens which we meaningfully cluster. Then, we develop a parameterized cluster embedding that balances the trade-off between privacy and utility. Lastly, we propose a MLDP algorithm which sanitizes/substitutes sensitive tokens in a text with the help of our embedding. Notably, our MLDP-based framework can be tuned with parameters such that (1) existing state-of-the-art (SOTA) token sanitization algorithms can be described—and improved—via our framework with extremal values of our parameters, and (2) by varying our parameters, we allow for a whole spectrum of privacy-utility tradeoffs between the two SOTA. Our experiments demonstrate CluSanT’s balance between privacy and semantic coherence, highlighting its capability as a valuable framework for privacy-preserving text sanitization.

Subject: NAACL.2025 - Long Papers