Total: 1
Generative replay has proven effective in addressing the catastrophic forgetting issue of continual learning (CL) in natural language processing (NLP). However, relying on a single task-specific token or prompt often falls short in generating pseudo-samples that accurately reflect the true data distribution. This leads to issues of semantic inconsistency and scale inconsistency.To tackle these challenges, we propose a Prototype Conditioned Generative Replay (PCGR) method, which enhances generative reply by incorporating task-level statistics through a Prototype Conditioned Variational Autoencoder (PCVAE).Specifically, task-level embedding statistics are stored as prototypes for each old task. When a new task is introduced, PCVAE draws samples from task-specific prototype-based distributions to generate pseudo-samples.By incorporating the prototype, the generated pseudo-samples are both more representative and sufficiently diverse to reflect the real data distribution.Furthermore, as previously stored prototypes may become outdated due to evolving model parameters, we propose a Prototype Shift Estimation (PSE) to adjust for these changes.Experiments on NLP tasks across two different scenarios show that PCGR outperforms previous state-of-the-art (SOTA) methods.