Total: 1
In recommender systems, users often seek the best products through indirect, vague, or under-specified queries such as “best shoes for trail running.” These queries, referred to as implicit superlative queries, pose a challenge for standard retrieval and ranking systems due to their lack of explicit attribute mentions and the need for identifying and reasoning over complex attributes. We investigate how Large Language Models (LLMs) can generate implicit attributes for ranking and reason over them to improve product recommendations for such queries. As a first step, we propose a novel four-point schema, called SUPERB, for annotating the best product candidates for superlative queries, paired with LLM-based product annotations. We then empirically evaluate several existing retrieval and ranking approaches on our newly created dataset, providing insights and discussing how to integrate these findings into real-world e-commerce production systems.