20564@AAAI

Total: 1

#1 A Unifying Theory of Thompson Sampling for Continuous Risk-Averse Bandits [PDF] [Copy] [Kimi]

Authors: Joel Q. L. Chang ; Vincent Y. F. Tan

This paper unifies the design and the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem for a class of risk functionals ρ that are continuous and dominant. We prove generalised concentration bounds for these continuous and dominant risk functionals and show that a wide class of popular risk functionals belong to this class. Using our newly developed analytical toolkits, we analyse the algorithm ρ-MTS (for multinomial distributions) and prove that they admit asymptotically optimal regret bounds of risk-averse algorithms under the CVaR, proportional hazard, and other ubiquitous risk measures. More generally, we prove the asymptotic optimality of ρ-MTS for Bernoulli distributions for a class of risk measures known as empirical distribution performance measures (EDPMs); this includes the well-known mean-variance. Numerical simulations show that the regret bounds incurred by our algorithms are reasonably tight vis-à-vis algorithm-independent lower bounds.