Total: 1

In this paper, the monotone submodular maximization problem (SM) is studied. SM is to find a subset of size kappa from a universe of size n that maximizes a monotone submodular objective function f . We show using a novel analysis that the Pareto optimization algorithm achieves a worst-case ratio of (1 − epsilon)(1 − 1/e) in expectation for every cardinality constraint kappa < P , where P ≤ n + 1 is an input, in O(nP ln(1/epsilon)) queries of f . In addition, a novel evolutionary algorithm called the biased Pareto optimization algorithm, is proposed that achieves a worst-case ratio of (1 − epsilon)(1 − 1/e − epsilon) in expectation for every cardinality constraint kappa < P in O(n ln(P ) ln(1/epsilon)) queries of f . Further, the biased Pareto optimization algorithm can be modified in order to achieve a a worst-case ratio of (1 − epsilon)(1 − 1/e − epsilon) in expectation for cardinality constraint kappa in O(n ln(1/epsilon)) queries of f . An empirical evaluation corroborates our theoretical analysis of the algorithms, as the algorithms exceed the stochastic greedy solution value at roughly when one would expect based upon our analysis.