26860@AAAI

Total: 1

#1 Vessel-to-Vessel Motion Compensation with Reinforcement Learning [PDF1] [Copy] [Kimi] [REL]

Authors: Sverre Herland, Kerstin Bach

Actuation delay poses a challenge for robotic arms and cranes. This is especially the case in dynamic environments where the robot arm or the objects it is trying to manipulate are moved by exogenous forces. In this paper, we consider the task of using a robotic arm to compensate for relative motion between two vessels at sea. We construct a hybrid controller that combines an Inverse Kinematic (IK) solver with a Reinforcement Learning (RL) agent that issues small corrections to the IK input. The solution is empirically evaluated in a simulated environment under several sea states and actuation delays. We observe that more intense waves and larger actuation delays have an adverse effect on the IK controller's ability to compensate for vessel motion. The RL agent is shown to be effective at mitigating large parts of these errors, both in the average case and in the worst case. Its modest requirement for sensory information, combined with the inherent safety in only making small adjustments, also makes it a promising approach for real-world deployment.