274@2024@IJCAI

Total: 1

#1 Graph Attention Network with High-Order Neighbor Information Propagation for Social Recommendation [PDF2] [Copy] [Kimi2] [REL]

Authors: Fei Xiong, Haoran Sun, Guixun Luo, Shirui Pan, Meikang Qiu, Liang Wang

In recommender systems, graph neural networks (GNN) can integrate interactions between users and items with their attributes, which makes GNN-based methods more powerful. However, directly stacking multiple layers in a graph neural network can easily lead to over-smoothing, hence recommendation systems based on graph neural networks typically underutilize higher-order neighborhoods in their learning. Although some heterogeneous graph random walk methods based on meta-paths can achieve higher-order aggregation, the focus is predominantly on the nodes at the ends of the paths. Moreover, these methods require manually defined meta-paths, which limits the model’s expressiveness and flexibility. Furthermore, path encoding in graph neural networks usually focuses only on the sequence leading to the target node. However, real-world interactions often do not follow this strict sequence, limiting the predictive performance of sequence-based network models. These problems prevent GNN-based methods from being fully effective. We propose a Graph Attention network with Information Propagation path aggregation for Social Recommendation (GAIPSRec). Firstly, we propose a universal heterogeneous graph sampling framework that does not require manually defining meta-paths for path sampling, thereby offering greater flexibility. Moreover, our method takes into account all nodes on the aggregation path and is capable of learning information from higher-order neighbors without succumbing to over-smoothing. Finally, our method utilizes a gate mechanism to fuse sequential and non-sequential dependence in encoding path instances, allowing a more holistic view of the data. Extensive experiments on real-world datasets show that our proposed GAIPSRec improves the performance significantly and outperforms state-of-the-art methods.

Subject: IJCAI.2024 - Data Mining