27aIOGfkAV@OpenReview

Total: 1

#1 Sequential Multi-Agent Dynamic Algorithm Configuration [PDF] [Copy] [Kimi] [REL]

Authors: Chen Lu, Ke Xue, Lei Yuan, Yao Wang, Yaoyuan Wang, Fu Sheng, Chao Qian

The performance of an algorithm often critically depends on its hyperparameter configuration. Dynamic algorithm configuration (DAC) is a recent trend in automated machine learning, which can dynamically adjust the algorithm’s configuration during the execution process and relieve users from tedious trial-and-error tuning tasks. Recently, multi-agent reinforcement learning (MARL) approaches have improved the configuration of multiple heterogeneous hyperparameters, making various parameter configurations for complex algorithms possible. However, many complex algorithms have inherent inter-dependencies among multiple parameters (e.g., determining the operator type first and then the operator's parameter), which are, however, not considered in previous approaches, thus leading to sub-optimal results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC) framework to address this issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we propose a sequential advantage decomposition network, which can leverage action-order information through sequential advantage decomposition. Experiments from synthetic functions to the configuration of multi-objective optimization algorithms demonstrate Seq-MADAC's superior performance over state-of-the-art MARL methods and show strong generalization across problem classes. Seq-MADAC establishes a new paradigm for the widespread dependency-aware automated algorithm configuration. Our code is available at https://github.com/lamda-bbo/seq-madac.

Subject: NeurIPS.2025 - Poster