Total: 1
Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN.