28959@AAAI

Total: 1

#1 Transfer and Alignment Network for Generalized Category Discovery [PDF] [Copy] [Kimi1]

Authors: Wenbin An ; Feng Tian ; Wenkai Shi ; Yan Chen ; Yaqiang Wu ; Qianying Wang ; Ping Chen

Generalized Category Discovery (GCD) is a crucial real-world task that aims to recognize both known and novel categories from an unlabeled dataset by leveraging another labeled dataset with only known categories. Despite the improved performance on known categories, current methods perform poorly on novel categories. We attribute the poor performance to two reasons: biased knowledge transfer between labeled and unlabeled data and noisy representation learning on the unlabeled data. The former leads to unreliable estimation of learning targets for novel categories and the latter hinders models from learning discriminative features. To mitigate these two issues, we propose a Transfer and Alignment Network (TAN), which incorporates two knowledge transfer mechanisms to calibrate the biased knowledge and two feature alignment mechanisms to learn discriminative features. Specifically, we model different categories with prototypes and transfer the prototypes in labeled data to correct model bias towards known categories. On the one hand, we pull instances with known categories in unlabeled data closer to these prototypes to form more compact clusters and avoid boundary overlap between known and novel categories. On the other hand, we use these prototypes to calibrate noisy prototypes estimated from unlabeled data based on category similarities, which allows for more accurate estimation of prototypes for novel categories that can be used as reliable learning targets later. After knowledge transfer, we further propose two feature alignment mechanisms to acquire both instance- and category-level knowledge from unlabeled data by aligning instance features with both augmented features and the calibrated prototypes, which can boost model performance on both known and novel categories with less noise. Experiments on three benchmark datasets show that our model outperforms SOTA methods, especially on novel categories. Theoretical analysis is provided for an in-depth understanding of our model in general. Our code and data are available at https://github.com/Lackel/TAN.