31986@AAAI

Total: 1

#1 3D Denoisers Are Good 2D Teachers: Molecular Pretraining via Denoising and Cross-Modal Distillation [PDF13] [Copy] [Kimi4] [REL]

Authors: Sungjun Cho, Dae-Woong Jeong, Sung Moon Ko, Jinwoo Kim, Sehui Han, Seunghoon Hong, Honglak Lee, Moontae Lee

Pretraining molecular representations from large unlabeled data is essential for molecular property prediction due to the high cost of obtaining ground-truth labels. While there exist various 2D graph-based molecular pretraining approaches, these methods struggle to show statistically significant gains in predictive performance. Recent work have thus instead proposed 3D conformer-based pretraining under the task of denoising, leading to promising results. During downstream finetuning, however, models trained with 3D conformers require accurate atom-coordinates of previously unseen molecules, which are computationally expensive to acquire at scale. In this paper, we propose a simple solution of denoise-and-distill (D&D), a self-supervised molecular representation learning method that pretrains a 2D graph encoder by distilling representations from a 3D denoiser. With denoising followed by cross-modal knowledge distillation, our approach enjoys use of knowledge obtained from denoising as well as painless application to downstream tasks with no access to 3D conformers. Experiments on real-world molecular property prediction datasets show that the graph encoder trained via D&D can infer 3D information based on the 2D graph and shows superior performance and label-efficiency against previous methods.

Subject: AAAI.2025 - Application Domains