Total: 1
The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design.