Total: 1
Monte-Carlo Tree Search (MCTS) is a popular approach to online planning under uncertainty. While MCTS uses statistical sampling via multi-armed bandits to avoid exhaustive search in complex domains, common closed-loop approaches typically construct enormous search trees to consider a large number of potential observations and actions. On the other hand, open-loop approaches offer better memory efficiency by ignoring observations but are generally not competitive with closed-loop MCTS in terms of performance - even with commonly integrated human knowledge. In this paper, we propose Counterfactual Open-loop Reasoning with Ad hoc Learning (CORAL) for open-loop MCTS, using a causal multi-armed bandit approach with unobserved confounders (MABUC). CORAL consists of two online learning phases that are conducted during the open-loop search. In the first phase, observational values are learned based on preferred actions. In the second phase, counterfactual values are learned with MABUCs to make a decision via an intent policy obtained from the observational values. We evaluate CORAL in four POMDP benchmark scenarios and compare it with closed-loop and open-loop alternatives. In contrast to standard open-loop MCTS, CORAL achieves competitive performance compared with closed-loop algorithms while constructing significantly smaller search trees.