Total: 1
AlphaZero has achieved remarkable success in complex decision-making problems through self-play and neural network training. However, its self-play process remains inefficient due to limited exploration of high-uncertainty positions, the overlooked runner-up decisions in Monte Carlo Tree Search (MCTS), and high variance in value labels. To address these challenges, we propose and evaluate uncertainty-guided exploration by branching from high-uncertainty positions using our proposed Label Change Rate (LCR) metric, which is further refined by a Bayesian inference framework. Our proposed approach leverages runner-up MCTS decisions to create multiple variations, and ensembles value labels across these variations to reduce variance. We investigate three key design parameters for our branching strategy: where to branch, how many variations to branch, and which move to play in the new branch. Our empirical findings indicate that branching with 10 variations per game provides the best performance-exploration balance. Overall, our end-to-end results show an improved sample efficiency over the baseline by 58.5\% on 9x9 Go in the early stage of training and by 47.3\% on 19x19 Go in the late stage of training.