6212@AAAI

Total: 1

#1 Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning [PDF1] [Copy] [Kimi] [REL]

Authors: Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang, Jun Wang, Zhen Xiao

Social psychology and real experiences show that cognitive consistency plays an important role to keep human society in order: if people have a more consistent cognition about their environments, they are more likely to achieve better cooperation. Meanwhile, only cognitive consistency within a neighborhood matters because humans only interact directly with their neighbors. Inspired by these observations, we take the first step to introduce neighborhood cognitive consistency (NCC) into multi-agent reinforcement learning (MARL). Our NCC design is quite general and can be easily combined with existing MARL methods. As examples, we propose neighborhood cognition consistent deep Q-learning and Actor-Critic to facilitate large-scale multi-agent cooperations. Extensive experiments on several challenging tasks (i.e., packet routing, wifi configuration and Google football player control) justify the superior performance of our methods compared with state-of-the-art MARL approaches.

Subject: AAAI.2020 - Multiagent Systems