Total: 1
By optimizing probability distributions over discrete latent codes, Stochastic Generative Hashing (SGH) bypasses the critical and intractable binary constraints on hash codes. While encouraging results were reported, SGH still suffers from the deficient usage of latent codes, i.e., there often exist many uninformative latent dimensions in the code space, a disadvantage inherited from its auto-encoding variational framework. Motivated by the fact that code redundancy usually is severer when more complex decoder network is used, in this paper, we propose a constrained deep generative architecture to simplify the decoder for data reconstruction. Specifically, our new framework forces the latent hashing codes to not only reconstruct data through the generative network but also retain minimal squared L2 difference to the last real-valued network hidden layer. Furthermore, during posterior inference, we propose to regularize the standard auto-encoding objective with an additional term that explicitly accounts for the negative redundancy degree of latent code dimensions. We interpret such modifications as Bayesian posterior regularization and design an adversarial strategy to optimize the generative, the variational, and the redundancy-resistanting parameters. Empirical results show that our new method can significantly boost the quality of learned codes and achieve state-of-the-art performance for image retrieval.