762@2024@IJCAI

Total: 1

#1 ClothPPO: A Proximal Policy Optimization Enhancing Framework for Robotic Cloth Manipulation with Observation-Aligned Action Spaces [PDF] [Copy] [Kimi] [REL]

Authors: Libing Yang ; Yang Li ; Long Chen

Vision-based robotic cloth unfolding has made great progress recently. However, prior works predominantly rely on value learning and have not fully explored policy-based techniques. Recently, the success of reinforcement learning on the large language model has shown that the policy gradient algorithm can enhance policy with huge action space. In this paper, we introduce ClothPPO, a framework that employs a policy gradient algorithm based on actor-critic architecture to enhance a pre-trained model with huge 10^6 action spaces aligned with observation in the task of unfolding clothes. To this end, we redefine the cloth manipulation problem as a partially observable Markov decision process. A supervised pre-training stage is employed to train a baseline model of our policy. In the second stage, the Proximal Policy Optimization (PPO) is utilized to guide the supervised model within the observation-aligned action space. By optimizing and updating the strategy, our proposed method increases the garment's surface area for cloth unfolding under the soft-body manipulation task. Experimental results show that our proposed framework can further improve the unfolding performance of other state-of-the-art methods. Our project is available at https://vpx-ecnu.github.io/ClothPPO-website/.