7791@2024@ECCV

Total: 1

#1 TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds [PDF] [Copy] [Kimi] [REL]

Authors: Dupont Elona, Kseniya Cherenkova, Dimitrios Mallis, Gleb A Gusev, Anis Kacem, Djamila Aouada

3D reverse engineering, in which a CAD model is inferred given a 3D scan of a physical object, is a research direction that offers many promising practical applications. This paper proposes TransCAD, an end-to-end transformer-based architecture that predicts the CAD sequence from a point cloud. TransCAD leverages the structure of CAD sequences by using a hierarchical learning strategy. A loop refiner is also introduced to regress sketch primitive parameters. Rigorous experimentation on the DeepCAD and Fusion360 datasets show that TransCAD achieves state-of-the-art results. The result analysis is supported with a proposed metric for CAD sequence, the mean Average Precision of CAD Sequence, that addresses the limitations of existing metrics.

Subject: ECCV.2024 - Poster