Total: 1
Recent advances in geometric deep learning and generative modeling have enabled the design of novel proteins with a wide range of desired properties. However, current state-of-the-art approaches are typically restricted to generating proteins with only static target properties, such as motifs and symmetries. In this work, we take a step towards overcoming this limitation by proposing a framework to condition structure generation on flexibility, which is crucial for key functionalities such as catalysis or molecular recognition. We first introduce BackFlip, an equivariant neural network for predicting per-residue flexibility from an input backbone structure. Relying on BackFlip, we propose FliPS, an SE(3)-equivariant conditional flow matching model that solves the inverse problem, that is, generating backbones that display a target flexibility profile. In our experiments, we show that FliPS is able to generate novel and diverse protein backbones with the desired flexibility, verified by Molecular Dynamics (MD) simulations.