8LO0vLRXpz@OpenReview

Total: 1

#1 Enhancing LLM Planning for Robotics Manipulation through Hierarchical Procedural Knowledge Graphs [PDF] [Copy] [Kimi1] [REL]

Authors: Jiacong Zhou, Jiaxu Miao, Xianyun Wang, Jun Yu

Large Language Models (LLMs) have shown the promising planning capabilities for robotic manipulation, which advances the development of embodied intelligence significantly. However, existing LLM-driven robotic manipulation approaches excel at simple pick-and-place tasks but are insufficient for complex manipulation tasks due to inaccurate procedural knowledge. Besides, for embodied intelligence, equipping a large scale LLM is energy-consuming and inefficient, which affects its real-world application. To address the above problems, we propose Hierarchical Procedural Knowledge Graphs (\textbf{HP-KG}) to enhance LLMs for complex robotic planning while significantly reducing the demand for LLM scale in robotic manipulation. Considering that the complex real-world tasks require multiple steps, and each step is composed of robotic-understandable atomic actions, we design a hierarchical knowledge graph structure to model the relationships between tasks, steps, and actions. This design bridges the gap between human instructions and robotic manipulation actions. To construct HP-KG, we develop an automatic knowledge graph construction framework powered by LLM-based multi-agents, which eliminates costly manual efforts while maintaining high-quality graph structures. The resulting HP-KG encompasses over 40k activity steps across more than 6k household tasks, spanning diverse everyday scenarios. Extensive experiments demonstrate that small scale LLMs (7B) enhanced by our HP-KG significantly improve the planning capabilities, which are stronger than 72B LLMs only. Encouragingly, our approach remains effective on the most powerful GPT-4o model.

Subject: NeurIPS.2025 - Poster