AAAI.2019 - Knowledge Representation and Reasoning

| Total: 60

#1 Satisfiability in Strategy Logic Can Be Easier than Model Checking [PDF] [Copy] [Kimi1] [REL]

Authors: Erman Acar, Massimo Benerecetti, Fabio Mogavero

In the design of complex systems, model-checking and satisfiability arise as two prominent decision problems. While model-checking requires the designed system to be provided in advance, satisfiability allows to check if such a system even exists. With very few exceptions, the second problem turns out to be harder than the first one from a complexity-theoretic standpoint. In this paper, we investigate the connection between the two problems for a non-trivial fragment of Strategy Logic (SL, for short). SL extends LTL with first-order quantifications over strategies, thus allowing to explicitly reason about the strategic abilities of agents in a multi-agent system. Satisfiability for the full logic is known to be highly undecidable, while model-checking is non-elementary. The SL fragment we consider is obtained by preventing strategic quantifications within the scope of temporal operators. The resulting logic is quite powerful, still allowing to express important game-theoretic properties of multi-agent systems, such as existence of Nash and immune equilibria, as well as to formalize the rational synthesis problem. We show that satisfiability for such a fragment is PSPACE-COMPLETE, while its model-checking complexity is 2EXPTIME-HARD. The result is obtained by means of an elegant encoding of the problem into the satisfiability of conjunctive-binding first-order logic, a recently discovered decidable fragment of first-order logic.


#2 Unbounded Orchestrations of Transducers for Manufacturing [PDF] [Copy] [Kimi] [REL]

Authors: Natasha Alechina, Tomáš Brázdil, Giuseppe De Giacomo, Paolo Felli, Brian Logan, Moshe Y. Vardi

There has recently been increasing interest in using reactive synthesis techniques to automate the production of manufacturing process plans. Previous work has assumed that the set of manufacturing resources is known and fixed in advance. In this paper, we consider the more general problem of whether a controller can be synthesized given sufficient resources. In the unbounded setting, only the types of available manufacturing resources are given, and we want to know whether it is possible to manufacture a product using only resources of those type(s), and, if so, how many resources of each type are needed. We model manufacturing processes and facilities as transducers (automata with output), and show that the unbounded orchestration problem is decidable and the (Pareto) optimal set of resources necessary to manufacture a product is computable for uni-transducers. However, for multitransducers, the problem is undecidable.


#3 Relaxing and Restraining Queries for OBDA [PDF] [Copy] [Kimi] [REL]

Authors: Medina Andreşel, Yazmín Ibáñez-García, Magdalena Ortiz, Mantas Šimkus

We advocate the use of ontologies for relaxing and restraining queries, so that they retrieve either more or less answers, enabling the exploration of a given dataset. We propose a set of rewriting rules to relax and restrain conjunctive queries (CQs) over datasets mediated by an ontology written in a dialect of DL-Lite with complex role inclusions (CRIs). The addition of CRI enables the representation of knowledge about data involving ordered hierarchies of categories, in the style of multi-dimensional data models. Although CRIs in general destroy the first-order rewritability of CQs, we identify settings in which CQs remain rewritable.


#4 Certifying the True Error: Machine Learning in Coq with Verified Generalization Guarantees [PDF] [Copy] [Kimi] [REL]

Authors: Alexander Bagnall, Gordon Stewart

We present MLCERT, a novel system for doing practical mechanized proof of the generalization of learning procedures, bounding expected error in terms of training or test error. MLCERT is mechanized in that we prove generalization bounds inside the theorem prover Coq; thus the bounds are machine checked by Coq’s proof checker. MLCERT is practical in that we extract learning procedures defined in Coq to executable code; thus procedures with proved generalization bounds can be trained and deployed in real systems. MLCERT is well documented and open source; thus we expect it to be usable even by those without Coq expertise. To validate MLCERT, which is compatible with external tools such as TensorFlow, we use it to prove generalization bounds on neural networks trained using TensorFlow on the extended MNIST data set.


#5 Extension Removal in Abstract Argumentation – An Axiomatic Approach [PDF] [Copy] [Kimi] [REL]

Authors: Ringo Baumann, Gerhard Brewka

This paper continues the rather recent line of research on the dynamics of non-monotonic formalisms. In particular, we consider semantic changes in Dung’s abstract argumentation formalism. One of the most studied problems in this context is the so-called enforcing problem which is concerned with manipulating argumentation frameworks (AFs) such that a certain desired set of arguments becomes an extension. Here we study the inverse problem, namely the extension removal problem: is it possible – and if so how – to modify a given argumentation framework in such a way that certain undesired extensions are no longer generated? Analogously to the well known AGM paradigm we develop an axiomatic approach to the removal problem, i.e. a certain set of axioms will determine suitable manipulations. Although contraction (that is, the elimination of a particular belief) is conceptually quite different from extension removal, there are surprisingly deep connections between the two: it turns out that postulates for removal can be directly obtained as reformulations of the AGM contraction postulates. We prove a series of formal results including conditional and unconditional existence and semantical uniqueness of removal operators as well as various impossibility results – and show possible ways out.


#6 Abstracting Causal Models [PDF] [Copy] [Kimi] [REL]

Authors: Sander Beckers, Joseph Y. Halpern

We consider a sequence of successively more restrictive definitions of abstraction for causal models, starting with a notion introduced by Rubenstein et al. (2017) called exact transformation that applies to probabilistic causal models, moving to a notion of uniform transformation that applies to deterministic causal models and does not allow differences to be hidden by the “right” choice of distribution, and then to abstraction, where the interventions of interest are determined by the map from low-level states to high-level states, and strong abstraction, which takes more seriously all potential interventions in a model, not just the allowed interventions. We show that procedures for combining micro-variables into macro-variables are instances of our notion of strong abstraction, as are all the examples considered by Rubenstein et al.


#7 Weighted Abstract Dialectical Frameworks through the Lens of Approximation Fixpoint Theory [PDF] [Copy] [Kimi] [REL]

Author: Bart Bogaerts

Weighted abstract dialectical frameworks (wADFs) were recently introduced, extending abstract dialectical frameworks to incorporate degrees of acceptance. In this paper, we propose a different view on wADFs: we develop semantics for wADFs based on approximation fixpoint theory, an abstract algebraic theory designed to capture semantics of various non-monotonic reasoning formalisms. Our formalism deviates from the original definition on some basic assumptions, the most fundamental is that we assume an ordering on acceptance degrees. We discuss the impact of the differences, the relationship between the two versions of the formalism, and the advantages each of the approaches offers. We furthermore study complexity of various semantics.


#8 Enhancing Lazy Grounding with Lazy Normalization in Answer-Set Programming [PDF] [Copy] [Kimi] [REL]

Authors: Jori Bomanson, Tomi Janhunen, Antonius Weinzierl

Answer-Set Programming (ASP) is an expressive rule-based knowledge-representation formalism. Lazy grounding is a solving technique that avoids the well-known grounding bottleneck of traditional ASP evaluation but is restricted to normal rules, severely limiting its expressive power. In this work, we introduce a framework to handle aggregates by normalizing them on demand during lazy grounding, hence relieving the restrictions of lazy grounding significantly. We term our approach as lazy normalization and demonstrate its feasibility for different types of aggregates. Asymptotic behavior is analyzed and correctness of the presented lazy normalizations is shown. Benchmark results indicate that lazy normalization can bring up-to exponential gains in space and time as well as enable ASP to be used in new application areas.


#9 Learning Features and Abstract Actions for Computing Generalized Plans [PDF] [Copy] [Kimi] [REL]

Authors: Blai Bonet, Guillem Francès, Hector Geffner

Generalized planning is concerned with the computation of plans that solve not one but multiple instances of a planning domain. Recently, it has been shown that generalized plans can be expressed as mappings of feature values into actions, and that they can often be computed with fully observable non-deterministic (FOND) planners. The actions in such plans, however, are not the actions in the instances themselves, which are not necessarily common to other instances, but abstract actions that are defined on a set of common features. The formulation assumes that the features and the abstract actions are given. In this work, we address this limitation by showing how to learn them automatically. The resulting account of generalized planning combines learning and planning in a novel way: a learner, based on a Max SAT formulation, yields the features and abstract actions from sampled state transitions, and a FOND planner uses this information, suitably transformed, to produce the general plans. Correctness guarantees are given and experimental results on several domains are reported.


#10 Ontology-Mediated Query Answering over Log-Linear Probabilistic Data [PDF] [Copy] [Kimi] [REL]

Authors: Stefan Borgwardt, İsmail İlkan Ceylan, Thomas Lukasiewicz

Large-scale knowledge bases are at the heart of modern information systems. Their knowledge is inherently uncertain, and hence they are often materialized as probabilistic databases. However, probabilistic database management systems typically lack the capability to incorporate implicit background knowledge and, consequently, fail to capture some intuitive query answers. Ontology-mediated query answering is a popular paradigm for encoding commonsense knowledge, which can provide more complete answers to user queries. We propose a new data model that integrates the paradigm of ontology-mediated query answering with probabilistic databases, employing a log-linear probability model. We compare our approach to existing proposals, and provide supporting computational results.


#11 Querying Attributed DL-Lite Ontologies Using Provenance Semirings [PDF] [Copy] [Kimi] [REL]

Authors: Camille Bourgaux, Ana Ozaki

Attributed description logic is a recently proposed formalism, targeted for graph-based representation formats, which enriches description logic concepts and roles with finite sets of attribute-value pairs, called annotations. One of the most important uses of annotations is to record provenance information. In this work, we first investigate the complexity of satisfiability and query answering for attributed DL-LiteR ontologies. We then propose a new semantics, based on provenance semirings, for integrating provenance information with query answering. Finally, we establish complexity results for satisfiability and query answering under this semantics.


#12 Model-Based Diagnosis for Cyber-Physical Production Systems Based on Machine Learning and Residual-Based Diagnosis Models [PDF] [Copy] [Kimi] [REL]

Authors: Andreas Bunte, Benno Stein, Oliver Niggemann

This paper introduces a novel approach to Model-Based Diagnosis (MBD) for hybrid technical systems. Unlike existing approaches which normally rely on qualitative diagnosis models expressed in logic, our approach applies a learned quantitative model that is used to derive residuals. Based on these residuals a diagnosis model is generated and used for a root cause identification. The new solution has several advantages such as the easy integration of new machine learning algorithms into MBD, a seamless integration of qualitative models, and a significant speed-up of the diagnosis runtime. The paper at hand formally defines the new approach, outlines its advantages and drawbacks, and presents an evaluation with real-world use cases.


#13 From Horn-SRIQ to Datalog: A Data-Independent Transformation That Preserves Assertion Entailment [PDF] [Copy] [Kimi] [REL]

Authors: David Carral, Larry González, Patrick Koopmann

Ontology-based access to large data-sets has recently gained a lot of attention. To access data efficiently, one approach is to rewrite the ontology into Datalog, and then use powerful Datalog engines to compute implicit entailments. Existing rewriting techniques support Description Logics (DLs) from ELH to Horn-SHIQ. We go one step further and present one such data-independent rewriting technique for Horn-SRIQ⊓, the extension of Horn-SHIQ that supports role chain axioms, an expressive feature prominently used in many real-world ontologies. We evaluated our rewriting technique on a large known corpus of ontologies. Our experiments show that the resulting rewritings are of moderate size, and that our approach is more efficient than state-of-the-art DL reasoners when reasoning with data-intensive ontologies.


#14 Identification of Causal Effects in the Presence of Selection Bias [PDF] [Copy] [Kimi] [REL]

Authors: Juan D. Correa, Jin Tian, Elias Bareinboim

Cause-and-effect relations are one of the most valuable types of knowledge sought after throughout the data-driven sciences since they translate into stable and generalizable explanations as well as efficient and robust decision-making capabilities. Inferring these relations from data, however, is a challenging task. Two of the most common barriers to this goal are known as confounding and selection biases. The former stems from the systematic bias introduced during the treatment assignment, while the latter comes from the systematic bias during the collection of units into the sample. In this paper, we consider the problem of identifiability of causal effects when both confounding and selection biases are simultaneously present. We first investigate the problem of identifiability when all the available data is biased. We prove that the algorithm proposed by [Bareinboim and Tian, 2015] is, in fact, complete, namely, whenever the algorithm returns a failure condition, no identifiability claim about the causal relation can be made by any other method. We then generalize this setting to when, in addition to the biased data, another piece of external data is available, without bias. It may be the case that a subset of the covariates could be measured without bias (e.g., from census). We examine the problem of identifiability when a combination of biased and unbiased data is available. We propose a new algorithm that subsumes the current state-of-the-art method based on the back-door criterion.


#15 Argumentation for Explainable Scheduling [PDF] [Copy] [Kimi] [REL]

Authors: Kristijonas Čyras, Dimitrios Letsios, Ruth Misener, Francesca Toni

Mathematical optimization offers highly-effective tools for finding solutions for problems with well-defined goals, notably scheduling. However, optimization solvers are often unexplainable black boxes whose solutions are inaccessible to users and which users cannot interact with. We define a novel paradigm using argumentation to empower the interaction between optimization solvers and users, supported by tractable explanations which certify or refute solutions. A solution can be from a solver or of interest to a user (in the context of ‘what-if’ scenarios). Specifically, we define argumentative and natural language explanations for why a schedule is (not) feasible, (not) efficient or (not) satisfying fixed user decisions, based on models of the fundamental makespan scheduling problem in terms of abstract argumentation frameworks (AFs). We define three types of AFs, whose stable extensions are in one-to-one correspondence with schedules that are feasible, efficient and satisfying fixed decisions, respectively. We extract the argumentative explanations from these AFs and the natural language explanations from the argumentative ones.


#16 Approximate Stream Reasoning with Metric Temporal Logic under Uncertainty [PDF] [Copy] [Kimi] [REL]

Authors: Daniel de Leng, Fredrik Heintz

Stream reasoning can be defined as incremental reasoning over incrementally-available information. The formula progression procedure for Metric Temporal Logic (MTL) makes use of syntactic formula rewritings to incrementally evaluate formulas against incrementally-available states. Progression however assumes complete state information, which can be problematic when not all state information is available or can be observed, such as in qualitative spatial reasoning tasks or in robotics applications. In those cases, there may be uncertainty as to which state out of a set of possible states represents the ‘true’ state. The main contribution of this paper is therefore an extension of the progression procedure that efficiently keeps track of all consistent hypotheses. The resulting procedure is flexible, allowing a trade-off between faster but approximate and slower but precise progression under uncertainty. The proposed approach is empirically evaluated by considering the time and space requirements, as well as the impact of permitting varying degrees of uncertainty.


#17 ABox Abduction via Forgetting in ALC [PDF] [Copy] [Kimi] [REL]

Authors: Warren Del-Pinto, Renate A. Schmidt

Abductive reasoning generates explanatory hypotheses for new observations using prior knowledge. This paper investigates the use of forgetting, also known as uniform interpolation, to perform ABox abduction in description logic (ALC) ontologies. Non-abducibles are specified by a forgetting signature which can contain concept, but not role, symbols. The resulting hypotheses are semantically minimal and consist of a disjunction of ABox axioms. These disjuncts are each independent explanations, and are not redundant with respect to the background ontology or the other disjuncts, representing a form of hypothesis space. The observations and hypotheses handled by the method can contain both atomic or complex ALC concepts, excluding role assertions, and are not restricted to Horn clauses. Two approaches to redundancy elimination are explored in practice: full and approximate. Using a prototype implementation, experiments were performed over a corpus of real world ontologies to investigate the practicality of both approaches across several settings.


#18 Qualitative Spatial Logic over 2D Euclidean Spaces Is Not Finitely Axiomatisable [PDF] [Copy] [Kimi] [REL]

Authors: Heshan Du, Natasha Alechina

Several qualitative spatial logics used in reasoning about geospatial data have a sound and complete axiomatisation over metric spaces. It has been open whether the same axiomatisation is also sound and complete for 2D Euclidean spaces. We answer this question negatively by showing that the axiomatisations presented in (Du et al. 2013; Du and Alechina 2016) are not complete for 2D Euclidean spaces and, moreover, the logics are not finitely axiomatisable.


#19 Validation of Growing Knowledge Graphs by Abductive Text Evidences [PDF] [Copy] [Kimi] [REL]

Authors: Jianfeng Du, Jeff Z. Pan, Sylvia Wang, Kunxun Qi, Yuming Shen, Yu Deng

This paper proposes a validation mechanism for newly added triples in a growing knowledge graph. Given a logical theory, a knowledge graph, a text corpus, and a new triple to be validated, this mechanism computes a sorted list of explanations for the new triple to facilitate the validation of it, where an explanation, called an abductive text evidence, is a set of pairs of the form (triple, window) where appending the set of triples on the left to the knowledge graph enforces entailment of the new triple under the logical theory, while every sentence window on the right which is contained in the text corpus explains to some degree why the triple on the left is true. From the angle of practice, a special class of abductive text evidences called TEP-based abductive text evidence is proposed, which is constructed from explanation patterns seen before in the knowledge graph. Accordingly, a method for computing the complete set of TEP-based abductive text evidences is proposed. Moreover, a method for sorting abductive text evidences based on distantly supervised learning is proposed. To evaluate the proposed validation mechanism, four knowledge graphs with logical theories are constructed from the four great classical masterpieces of Chinese literature. Experimental results on these datasets demonstrate the efficiency and effectiveness of the proposed mechanism.


#20 On Structured Argumentation with Conditional Preferences [PDF] [Copy] [Kimi] [REL]

Authors: Phan Minh Dung, Phan Minh Thang, Tran Cao Son

We study defeasible knowledge bases with conditional preferences (DKB). A DKB consists of a set of undisputed facts and a rule-based system that contains different types of rules: strict, defeasible, and preference. A major challenge in defining the semantics of DKB lies in determining how conditional preferences interact with the attack relations represented by rebuts and undercuts, between arguments. We introduce the notions of preference attack relations as sets of attacks between preference arguments and the rebuts or undercuts among arguments as well as of preference attack relation assignments which map knowledge bases to preference attack relations. We present five rational properties (referred to as regular properties), the inconsistency-resolving, effective rebuts, context-independence, attack monotonicity and link-orientation properties generalizing the properties of the same names for the case of unconditional preferences. Preference attack relation assignment are defined as regular if they satisfy all regular properties. We show that the set of regular assignments forms a complete lower semilattice whose least element is referred to as the canonical preference attack relation assignment. Canonical attack relation assignment represents the semantics of preferences in defeasible knowledge bases as intuitively, it could be viewed as being uniquely identified by the regular properties together with the principle of minimal removal of undesired attacks. We also present the normal preference attack relation assignment as an approximation of the canonical attack relation assignment.


#21 Complexity of Abstract Argumentation under a Claim-Centric View [PDF] [Copy] [Kimi] [REL]

Authors: Wolfgang Dvořák, Stefan Woltran

Abstract argumentation frameworks have been introduced by Dung as part of an argumentation process, where arguments and conflicts are derived from a given knowledge base. It is solely this relation between arguments that is then used in order to identify acceptable sets of arguments. A final step concerns the acceptance status of particular statements by reviewing the actual contents of the acceptable arguments. Complexity analysis of abstract argumentation so far has neglected this final step and is concerned with argument names instead of their contents, i.e. their claims. As we outline in this paper, this is not only a slight deviation but can lead to different complexity results. We, therefore, give a comprehensive complexity analysis of abstract argumentation under a claim-centric view and analyse the four main decision problems under seven popular semantics. In addition, we also address the complexity of common sub-classes and introduce novel parameterisations – which exploit the nature of claims explicitly – along with fixed-parameter tractability results.


#22 Strong Equivalence for Epistemic Logic Programs Made Easy [PDF] [Copy] [Kimi] [REL]

Authors: Wolfgang Faber, Michael Morak, Stefan Woltran

Epistemic Logic Programs (ELPs), that is, Answer Set Programming (ASP) extended with epistemic operators, have received renewed interest in recent years, which led to a flurry of new research, as well as efficient solvers. An important question is under which conditions a sub-program can be replaced by another one without changing the meaning, in any context. This problem is known as strong equivalence, and is well-studied for ASP. For ELPs, this question has been approached by embedding them into epistemic extensions of equilibrium logics. In this paper, we consider a simpler, more direct characterization that is directly applicable to the language used in state-of-the-art ELP solvers. This also allows us to give tight complexity bounds, showing that strong equivalence for ELPs remains coNP-complete, as for ASP. We further use our results to provide syntactic characterizations for tautological rules and rule subsumption for ELPs.


#23 Disjunctive Normal Form for Multi-Agent Modal Logics Based on Logical Separability [PDF] [Copy] [Kimi] [REL]

Authors: Liangda Fang, Kewen Wang, Zhe Wang, Ximing Wen

Modal logics are primary formalisms for multi-agent systems but major reasoning tasks in such logics are intractable, which impedes applications of multi-agent modal logics such as automatic planning. One technique of tackling the intractability is to identify a fragment called a normal form of multiagent logics such that it is expressive but tractable for reasoning tasks such as entailment checking, bounded conjunction transformation and forgetting. For instance, DNF of propositional logic is tractable for these reasoning tasks. In this paper, we first introduce a notion of logical separability and then define a novel disjunctive normal form SDNF for the multiagent logic Kn, which overcomes some shortcomings of existing approaches. In particular, we show that every modal formula in Kn can be equivalently casted as a formula in SDNF, major reasoning tasks tractable in propositional DNF are also tractable in SDNF, and moreover, formulas in SDNF enjoy the property of logical separability. To demonstrate the usefulness of our approach, we apply SDNF in multi-agent epistemic planning. Finally, we extend these results to three more complex multi-agent logics Dn, K45n and KD45n.


#24 Counting Complexity for Reasoning in Abstract Argumentation [PDF] [Copy] [Kimi] [REL]

Authors: Johannes K. Fichte, Markus Hecher, Arne Meier

In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.


#25 A Sequential Set Generation Method for Predicting Set-Valued Outputs [PDF] [Copy] [Kimi] [REL]

Authors: Tian Gao, Jie Chen, Vijil Chenthamarakshan, Michael Witbrock

Consider a general machine learning setting where the output is a set of labels or sequences. This output set is unordered and its size varies with the input. Whereas multi-label classification methods seem a natural first resort, they are not readily applicable to set-valued outputs because of the growth rate of the output space; and because conventional sequence generation doesn’t reflect sets’ order-free nature. In this paper, we propose a unified framework—sequential set generation (SSG)—that can handle output sets of labels and sequences. SSG is a meta-algorithm that leverages any probabilistic learning method for label or sequence prediction, but employs a proper regularization such that a new label or sequence is generated repeatedly until the full set is produced. Though SSG is sequential in nature, it does not penalize the ordering of the appearance of the set elements and can be applied to a variety of set output problems, such as a set of classification labels or sequences. We perform experiments with both benchmark and synthetic data sets and demonstrate SSG’s strong performance over baseline methods.