ACL.2019 - Main

| Total: 660

#1 One Time of Interaction May Not Be Enough: Go Deep with an Interaction-over-Interaction Network for Response Selection in Dialogues [PDF1] [Copy] [Kimi3] [REL]

Authors: Chongyang Tao ; Wei Wu ; Can Xu ; Wenpeng Hu ; Dongyan Zhao ; Rui Yan

Currently, researchers have paid great attention to retrieval-based dialogues in open-domain. In particular, people study the problem by investigating context-response matching for multi-turn response selection based on publicly recognized benchmark data sets. State-of-the-art methods require a response to interact with each utterance in a context from the beginning, but the interaction is performed in a shallow way. In this work, we let utterance-response interaction go deep by proposing an interaction-over-interaction network (IoI). The model performs matching by stacking multiple interaction blocks in which residual information from one time of interaction initiates the interaction process again. Thus, matching information within an utterance-response pair is extracted from the interaction of the pair in an iterative fashion, and the information flows along the chain of the blocks via representations. Evaluation results on three benchmark data sets indicate that IoI can significantly outperform state-of-the-art methods in terms of various matching metrics. Through further analysis, we also unveil how the depth of interaction affects the performance of IoI.

#2 Incremental Transformer with Deliberation Decoder for Document Grounded Conversations [PDF] [Copy] [Kimi1] [REL]

Authors: Zekang Li ; Cheng Niu ; Fandong Meng ; Yang Feng ; Qian Li ; Jie Zhou

Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do not exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.

#3 Improving Multi-turn Dialogue Modelling with Utterance ReWriter [PDF] [Copy] [Kimi1] [REL]

Authors: Hui Su ; Xiaoyu Shen ; Rongzhi Zhang ; Fei Sun ; Pengwei Hu ; Cheng Niu ; Jie Zhou

Recent research has achieved impressive results in single-turn dialogue modelling. In the multi-turn setting, however, current models are still far from satisfactory. One major challenge is the frequently occurred coreference and information omission in our daily conversation, making it hard for machines to understand the real intention. In this paper, we propose rewriting the human utterance as a pre-process to help multi-turn dialgoue modelling. Each utterance is first rewritten to recover all coreferred and omitted information. The next processing steps are then performed based on the rewritten utterance. To properly train the utterance rewriter, we collect a new dataset with human annotations and introduce a Transformer-based utterance rewriting architecture using the pointer network. We show the proposed architecture achieves remarkably good performance on the utterance rewriting task. The trained utterance rewriter can be easily integrated into online chatbots and brings general improvement over different domains.

#4 Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study [PDF] [Copy] [Kimi1] [REL]

Authors: Chinnadhurai Sankar ; Sandeep Subramanian ; Chris Pal ; Sarath Chandar ; Yoshua Bengio

Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily adapted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.

#5 Boosting Dialog Response Generation [PDF] [Copy] [Kimi1] [REL]

Authors: Wenchao Du ; Alan W Black

Neural models have become one of the most important approaches to dialog response generation. However, they still tend to generate the most common and generic responses in the corpus all the time. To address this problem, we designed an iterative training process and ensemble method based on boosting. We combined our method with different training and decoding paradigms as the base model, including mutual-information-based decoding and reward-augmented maximum likelihood learning. Empirical results show that our approach can significantly improve the diversity and relevance of the responses generated by all base models, backed by objective measurements and human evaluation.

#6 Constructing Interpretive Spatio-Temporal Features for Multi-Turn Responses Selection [PDF] [Copy] [Kimi1] [REL]

Authors: Junyu Lu ; Chenbin Zhang ; Zeying Xie ; Guang Ling ; Tom Chao Zhou ; Zenglin Xu

Response selection plays an important role in fully automated dialogue systems. Given the dialogue context, the goal of response selection is to identify the best-matched next utterance (i.e., response) from multiple candidates. Despite the efforts of many previous useful models, this task remains challenging due to the huge semantic gap and also the large size of candidate set. To address these issues, we propose a Spatio-Temporal Matching network (STM) for response selection. In detail, soft alignment is first used to obtain the local relevance between the context and the response. And then, we construct spatio-temporal features by aggregating attention images in time dimension and make use of 3D convolution and pooling operations to extract matching information. Evaluation on two large-scale multi-turn response selection tasks has demonstrated that our proposed model significantly outperforms the state-of-the-art model. Particularly, visualization analysis shows that the spatio-temporal features enables matching information in segment pairs and time sequences, and have good interpretability for multi-turn text matching.

#7 Semantic Parsing with Dual Learning [PDF] [Copy] [Kimi1] [REL]

Authors: Ruisheng Cao ; Su Zhu ; Chen Liu ; Jieyu Li ; Kai Yu

Semantic parsing converts natural language queries into structured logical forms. The lack of training data is still one of the most serious problems in this area. In this work, we develop a semantic parsing framework with the dual learning algorithm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on OVERNIGHT dataset.

#8 Semantic Expressive Capacity with Bounded Memory [PDF] [Copy] [Kimi1] [REL]

Authors: Antoine Venant ; Alexander Koller

We investigate the capacity of mechanisms for compositional semantic parsing to describe relations between sentences and semantic representations. We prove that in order to represent certain relations, mechanisms which are syntactically projective must be able to remember an unbounded number of locations in the semantic representations, where nonprojective mechanisms need not. This is the first result of this kind, and has consequences both for grammar-based and for neural systems.

#9 AMR Parsing as Sequence-to-Graph Transduction [PDF] [Copy] [Kimi1] [REL]

Authors: Sheng Zhang ; Xutai Ma ; Kevin Duh ; Benjamin Van Durme

We propose an attention-based model that treats AMR parsing as sequence-to-graph transduction. Unlike most AMR parsers that rely on pre-trained aligners, external semantic resources, or data augmentation, our proposed parser is aligner-free, and it can be effectively trained with limited amounts of labeled AMR data. Our experimental results outperform all previously reported SMATCH scores, on both AMR 2.0 (76.3% on LDC2017T10) and AMR 1.0 (70.2% on LDC2014T12).

#10 Generating Logical Forms from Graph Representations of Text and Entities [PDF] [Copy] [Kimi1] [REL]

Authors: Peter Shaw ; Philip Massey ; Angelica Chen ; Francesco Piccinno ; Yasemin Altun

Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.

#11 Learning Compressed Sentence Representations for On-Device Text Processing [PDF] [Copy] [Kimi1] [REL]

Authors: Dinghan Shen ; Pengyu Cheng ; Dhanasekar Sundararaman ; Xinyuan Zhang ; Qian Yang ; Meng Tang ; Asli Celikyilmaz ; Lawrence Carin

Vector representations of sentences, trained on massive text corpora, are widely used as generic sentence embeddings across a variety of NLP problems. The learned representations are generally assumed to be continuous and real-valued, giving rise to a large memory footprint and slow retrieval speed, which hinders their applicability to low-resource (memory and computation) platforms, such as mobile devices. In this paper, we propose four different strategies to transform continuous and generic sentence embeddings into a binarized form, while preserving their rich semantic information. The introduced methods are evaluated across a wide range of downstream tasks, where the binarized sentence embeddings are demonstrated to degrade performance by only about 2% relative to their continuous counterparts, while reducing the storage requirement by over 98%. Moreover, with the learned binary representations, the semantic relatedness of two sentences can be evaluated by simply calculating their Hamming distance, which is more computational efficient compared with the inner product operation between continuous embeddings. Detailed analysis and case study further validate the effectiveness of proposed methods.

#12 The (Non-)Utility of Structural Features in BiLSTM-based Dependency Parsers [PDF] [Copy] [Kimi] [REL]

Authors: Agnieszka Falenska ; Jonas Kuhn

Classical non-neural dependency parsers put considerable effort on the design of feature functions. Especially, they benefit from information coming from structural features, such as features drawn from neighboring tokens in the dependency tree. In contrast, their BiLSTM-based successors achieve state-of-the-art performance without explicit information about the structural context. In this paper we aim to answer the question: How much structural context are the BiLSTM representations able to capture implicitly? We show that features drawn from partial subtrees become redundant when the BiLSTMs are used. We provide a deep insight into information flow in transition- and graph-based neural architectures to demonstrate where the implicit information comes from when the parsers make their decisions. Finally, with model ablations we demonstrate that the structural context is not only present in the models, but it significantly influences their performance.

#13 Automatic Generation of High Quality CCGbanks for Parser Domain Adaptation [PDF] [Copy] [Kimi1] [REL]

Authors: Masashi Yoshikawa ; Hiroshi Noji ; Koji Mineshima ; Daisuke Bekki

We propose a new domain adaptation method for Combinatory Categorial Grammar (CCG) parsing, based on the idea of automatic generation of CCG corpora exploiting cheaper resources of dependency trees. Our solution is conceptually simple, and not relying on a specific parser architecture, making it applicable to the current best-performing parsers. We conduct extensive parsing experiments with detailed discussion; on top of existing benchmark datasets on (1) biomedical texts and (2) question sentences, we create experimental datasets of (3) speech conversation and (4) math problems. When applied to the proposed method, an off-the-shelf CCG parser shows significant performance gains, improving from 90.7% to 96.6% on speech conversation, and from 88.5% to 96.8% on math problems.

#14 A Joint Named-Entity Recognizer for Heterogeneous Tag-sets Using a Tag Hierarchy [PDF] [Copy] [Kimi1] [REL]

Authors: Genady Beryozkin ; Yoel Drori ; Oren Gilon ; Tzvika Hartman ; Idan Szpektor

We study a variant of domain adaptation for named-entity recognition where multiple, heterogeneously tagged training sets are available. Furthermore, the test tag-set is not identical to any individual training tag-set. Yet, the relations between all tags are provided in a tag hierarchy, covering the test tags as a combination of training tags. This setting occurs when various datasets are created using different annotation schemes. This is also the case of extending a tag-set with a new tag by annotating only the new tag in a new dataset. We propose to use the given tag hierarchy to jointly learn a neural network that shares its tagging layer among all tag-sets. We compare this model to combining independent models and to a model based on the multitasking approach. Our experiments show the benefit of the tag-hierarchy model, especially when facing non-trivial consolidation of tag-sets.

#15 Massively Multilingual Transfer for NER [PDF] [Copy] [Kimi2] [REL]

Authors: Afshin Rahimi ; Yuan Li ; Trevor Cohn

In cross-lingual transfer, NLP models over one or more source languages are applied to a low-resource target language. While most prior work has used a single source model or a few carefully selected models, here we consider a “massive” setting with many such models. This setting raises the problem of poor transfer, particularly from distant languages. We propose two techniques for modulating the transfer, suitable for zero-shot or few-shot learning, respectively. Evaluating on named entity recognition, we show that our techniques are much more effective than strong baselines, including standard ensembling, and our unsupervised method rivals oracle selection of the single best individual model.

#16 Reliability-aware Dynamic Feature Composition for Name Tagging [PDF] [Copy] [Kimi1] [REL]

Authors: Ying Lin ; Liyuan Liu ; Heng Ji ; Dong Yu ; Jiawei Han

Word embeddings are widely used on a variety of tasks and can substantially improve the performance. However, their quality is not consistent throughout the vocabulary due to the long-tail distribution of word frequency. Without sufficient contexts, rare word embeddings are usually less reliable than those of common words. However, current models typically trust all word embeddings equally regardless of their reliability and thus may introduce noise and hurt the performance. Since names often contain rare and uncommon words, this problem is particularly critical for name tagging. In this paper, we propose a novel reliability-aware name tagging model to tackle this issue. We design a set of word frequency-based reliability signals to indicate the quality of each word embedding. Guided by the reliability signals, the model is able to dynamically select and compose features such as word embedding and character-level representation using gating mechanisms. For example, if an input word is rare, the model relies less on its word embedding and assigns higher weights to its character and contextual features. Experiments on OntoNotes 5.0 show that our model outperforms the baseline model by 2.7% absolute gain in F-score. In cross-genre experiments on five genres in OntoNotes, our model improves the performance for most genre pairs and obtains up to 5% absolute F-score gain.

#17 Unsupervised Pivot Translation for Distant Languages [PDF] [Copy] [Kimi] [REL]

Authors: Yichong Leng ; Xu Tan ; Tao Qin ; Xiang-Yang Li ; Tie-Yan Liu

Unsupervised neural machine translation (NMT) has attracted a lot of attention recently. While state-of-the-art methods for unsupervised translation usually perform well between similar languages (e.g., English-German translation), they perform poorly between distant languages, because unsupervised alignment does not work well for distant languages. In this work, we introduce unsupervised pivot translation for distant languages, which translates a language to a distant language through multiple hops, and the unsupervised translation on each hop is relatively easier than the original direct translation. We propose a learning to route (LTR) method to choose the translation path between the source and target languages. LTR is trained on language pairs whose best translation path is available and is applied on the unseen language pairs for path selection. Experiments on 20 languages and 294 distant language pairs demonstrate the advantages of the unsupervised pivot translation for distant languages, as well as the effectiveness of the proposed LTR for path selection. Specifically, in the best case, LTR achieves an improvement of 5.58 BLEU points over the conventional direct unsupervised method.

#18 Bilingual Lexicon Induction with Semi-supervision in Non-Isometric Embedding Spaces [PDF] [Copy] [Kimi1] [REL]

Authors: Barun Patra ; Joel Ruben Antony Moniz ; Sarthak Garg ; Matthew R. Gormley ; Graham Neubig

Recent work on bilingual lexicon induction (BLI) has frequently depended either on aligned bilingual lexicons or on distribution matching, often with an assumption about the isometry of the two spaces. We propose a technique to quantitatively estimate this assumption of the isometry between two embedding spaces and empirically show that this assumption weakens as the languages in question become increasingly etymologically distant. We then propose Bilingual Lexicon Induction with Semi-Supervision (BLISS) — a semi-supervised approach that relaxes the isometric assumption while leveraging both limited aligned bilingual lexicons and a larger set of unaligned word embeddings, as well as a novel hubness filtering technique. Our proposed method obtains state of the art results on 15 of 18 language pairs on the MUSE dataset, and does particularly well when the embedding spaces don’t appear to be isometric. In addition, we also show that adding supervision stabilizes the learning procedure, and is effective even with minimal supervision.

#19 An Effective Approach to Unsupervised Machine Translation [PDF] [Copy] [Kimi1] [REL]

Authors: Mikel Artetxe ; Gorka Labaka ; Eneko Agirre

While machine translation has traditionally relied on large amounts of parallel corpora, a recent research line has managed to train both Neural Machine Translation (NMT) and Statistical Machine Translation (SMT) systems using monolingual corpora only. In this paper, we identify and address several deficiencies of existing unsupervised SMT approaches by exploiting subword information, developing a theoretically well founded unsupervised tuning method, and incorporating a joint refinement procedure. Moreover, we use our improved SMT system to initialize a dual NMT model, which is further fine-tuned through on-the-fly back-translation. Together, we obtain large improvements over the previous state-of-the-art in unsupervised machine translation. For instance, we get 22.5 BLEU points in English-to-German WMT 2014, 5.5 points more than the previous best unsupervised system, and 0.5 points more than the (supervised) shared task winner back in 2014.

#20 Effective Adversarial Regularization for Neural Machine Translation [PDF] [Copy] [Kimi1] [REL]

Authors: Motoki Sato ; Jun Suzuki ; Shun Kiyono

A regularization technique based on adversarial perturbation, which was initially developed in the field of image processing, has been successfully applied to text classification tasks and has yielded attractive improvements. We aim to further leverage this promising methodology into more sophisticated and critical neural models in the natural language processing field, i.e., neural machine translation (NMT) models. However, it is not trivial to apply this methodology to such models. Thus, this paper investigates the effectiveness of several possible configurations of applying the adversarial perturbation and reveals that the adversarial regularization technique can significantly and consistently improve the performance of widely used NMT models, such as LSTM-based and Transformer-based models.

#21 Revisiting Low-Resource Neural Machine Translation: A Case Study [PDF] [Copy] [Kimi1] [REL]

Authors: Rico Sennrich ; Biao Zhang

It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions, underperforming phrase-based statistical machine translation (PBSMT) and requiring large amounts of auxiliary data to achieve competitive results. In this paper, we re-assess the validity of these results, arguing that they are the result of lack of system adaptation to low-resource settings. We discuss some pitfalls to be aware of when training low-resource NMT systems, and recent techniques that have shown to be especially helpful in low-resource settings, resulting in a set of best practices for low-resource NMT. In our experiments on German–English with different amounts of IWSLT14 training data, we show that, without the use of any auxiliary monolingual or multilingual data, an optimized NMT system can outperform PBSMT with far less data than previously claimed. We also apply these techniques to a low-resource Korean–English dataset, surpassing previously reported results by 4 BLEU.

#22 Domain Adaptive Inference for Neural Machine Translation [PDF] [Copy] [Kimi1] [REL]

Authors: Danielle Saunders ; Felix Stahlberg ; Adrià de Gispert ; Bill Byrne

We investigate adaptive ensemble weighting for Neural Machine Translation, addressing the case of improving performance on a new and potentially unknown domain without sacrificing performance on the original domain. We adapt sequentially across two Spanish-English and three English-German tasks, comparing unregularized fine-tuning, L2 and Elastic Weight Consolidation. We then report a novel scheme for adaptive NMT ensemble decoding by extending Bayesian Interpolation with source information, and report strong improvements across test domains without access to the domain label.

#23 Neural Relation Extraction for Knowledge Base Enrichment [PDF] [Copy] [Kimi1] [REL]

Authors: Bayu Distiawan Trisedya ; Gerhard Weikum ; Jianzhong Qi ; Rui Zhang

We study relation extraction for knowledge base (KB) enrichment. Specifically, we aim to extract entities and their relationships from sentences in the form of triples and map the elements of the extracted triples to an existing KB in an end-to-end manner. Previous studies focus on the extraction itself and rely on Named Entity Disambiguation (NED) to map triples into the KB space. This way, NED errors may cause extraction errors that affect the overall precision and recall. To address this problem, we propose an end-to-end relation extraction model for KB enrichment based on a neural encoder-decoder model. We collect high-quality training data by distant supervision with co-reference resolution and paraphrase detection. We propose an n-gram based attention model that captures multi-word entity names in a sentence. Our model employs jointly learned word and entity embeddings to support named entity disambiguation. Finally, our model uses a modified beam search and a triple classifier to help generate high-quality triples. Our model outperforms state-of-the-art baselines by 15.51% and 8.38% in terms of F1 score on two real-world datasets.

#24 Attention Guided Graph Convolutional Networks for Relation Extraction [PDF] [Copy] [Kimi1] [REL]

Authors: Zhijiang Guo ; Yan Zhang ; Wei Lu

Dependency trees convey rich structural information that is proven useful for extracting relations among entities in text. However, how to effectively make use of relevant information while ignoring irrelevant information from the dependency trees remains a challenging research question. Existing approaches employing rule based hard-pruning strategies for selecting relevant partial dependency structures may not always yield optimal results. In this work, we propose Attention Guided Graph Convolutional Networks (AGGCNs), a novel model which directly takes full dependency trees as inputs. Our model can be understood as a soft-pruning approach that automatically learns how to selectively attend to the relevant sub-structures useful for the relation extraction task. Extensive results on various tasks including cross-sentence n-ary relation extraction and large-scale sentence-level relation extraction show that our model is able to better leverage the structural information of the full dependency trees, giving significantly better results than previous approaches.

#25 Spatial Aggregation Facilitates Discovery of Spatial Topics [PDF] [Copy] [Kimi] [REL]

Authors: Aniruddha Maiti ; Slobodan Vucetic

Spatial aggregation refers to merging of documents created at the same spatial location. We show that by spatial aggregation of a large collection of documents and applying a traditional topic discovery algorithm on the aggregated data we can efficiently discover spatially distinct topics. By looking at topic discovery through matrix factorization lenses we show that spatial aggregation allows low rank approximation of the original document-word matrix, in which spatially distinct topics are preserved and non-spatial topics are aggregated into a single topic. Our experiments on synthetic data confirm this observation. Our experiments on 4.7 million tweets collected during the Sandy Hurricane in 2012 show that spatial and temporal aggregation allows rapid discovery of relevant spatial and temporal topics during that period. Our work indicates that different forms of document aggregation might be effective in rapid discovery of various types of distinct topics from large collections of documents.