| Total: 603
Pre-trained language models have shown stellar performance in various downstream tasks. But, this usually comes at the cost of high latency and computation, hindering their usage in resource-limited settings. In this work, we propose a novel approach for reducing the computational cost of BERT with minimal loss in downstream performance. Our method dynamically eliminates less contributing tokens through layers, resulting in shorter lengths and consequently lower computational cost. To determine the importance of each token representation, we train a Contribution Predictor for each layer using a gradient-based saliency method. Our experiments on several diverse classification tasks show speedups up to 22x during inference time without much sacrifice in performance. We also validate the quality of the selected tokens in our method using human annotations in the ERASER benchmark. In comparison to other widely used strategies for selecting important tokens, such as saliency and attention, our proposed method has a significantly lower false positive rate in generating rationales. Our code is freely available at https://github.com/amodaresi/AdapLeR.
This paper describes and tests a method for carrying out quantified reproducibility assessment (QRA) that is based on concepts and definitions from metrology. QRA produces a single score estimating the degree of reproducibility of a given system and evaluation measure, on the basis of the scores from, and differences between, different reproductions. We test QRA on 18 different system and evaluation measure combinations (involving diverse NLP tasks and types of evaluation), for each of which we have the original results and one to seven reproduction results. The proposed QRA method produces degree-of-reproducibility scores that are comparable across multiple reproductions not only of the same, but also of different, original studies. We find that the proposed method facilitates insights into causes of variation between reproductions, and as a result, allows conclusions to be drawn about what aspects of system and/or evaluation design need to be changed in order to improve reproducibility.
Recent studies have determined that the learned token embeddings of large-scale neural language models are degenerated to be anisotropic with a narrow-cone shape. This phenomenon, called the representation degeneration problem, facilitates an increase in the overall similarity between token embeddings that negatively affect the performance of the models. Although the existing methods that address the degeneration problem based on observations of the phenomenon triggered by the problem improves the performance of the text generation, the training dynamics of token embeddings behind the degeneration problem are still not explored. In this study, we analyze the training dynamics of the token embeddings focusing on rare token embedding. We demonstrate that the specific part of the gradient for rare token embeddings is the key cause of the degeneration problem for all tokens during training stage. Based on the analysis, we propose a novel method called, adaptive gradient gating(AGG). AGG addresses the degeneration problem by gating the specific part of the gradient for rare token embeddings. Experimental results from language modeling, word similarity, and machine translation tasks quantitatively and qualitatively verify the effectiveness of AGG.
Large Pre-trained Language Models (PLMs) have become ubiquitous in the development of language understanding technology and lie at the heart of many artificial intelligence advances. While advances reported for English using PLMs are unprecedented, reported advances using PLMs for Hebrew are few and far between. The problem is twofold. First, so far, Hebrew resources for training large language models are not of the same magnitude as their English counterparts. Second, most benchmarks available to evaluate progress in Hebrew NLP require morphological boundaries which are not available in the output of standard PLMs. In this work we remedy both aspects. We present AlephBERT, a large PLM for Modern Hebrew, trained on larger vocabulary and a larger dataset than any Hebrew PLM before. Moreover, we introduce a novel neural architecture that recovers the morphological segments encoded in contextualized embedding vectors. Based on this new morphological component we offer an evaluation suite consisting of multiple tasks and benchmarks that cover sentence-level, word-level and sub-word level analyses. On all tasks, AlephBERT obtains state-of-the-art results beyond contemporary Hebrew baselines. We make our AlephBERT model, the morphological extraction model, and the Hebrew evaluation suite publicly available, for evaluating future Hebrew PLMs.
Neural discrete reasoning (NDR) has shown remarkable progress in combining deep models with discrete reasoning. However, we find that existing NDR solution suffers from large performance drop on hypothetical questions, e.g. “what the annualized rate of return would be if the revenue in 2020 was doubled”. The key to hypothetical question answering (HQA) is counterfactual thinking, which is a natural ability of human reasoning but difficult for deep models. In this work, we devise a Learning to Imagine (L2I) module, which can be seamlessly incorporated into NDR models to perform the imagination of unseen counterfactual. In particular, we formulate counterfactual thinking into two steps: 1) identifying the fact to intervene, and 2) deriving the counterfactual from the fact and assumption, which are designed as neural networks. Based on TAT-QA, we construct a very challenging HQA dataset with 8,283 hypothetical questions. We apply the proposed L2I to TAGOP, the state-of-the-art solution on TAT-QA, validating the rationality and effectiveness of our approach.
Complex word identification (CWI) is a cornerstone process towards proper text simplification. CWI is highly dependent on context, whereas its difficulty is augmented by the scarcity of available datasets which vary greatly in terms of domains and languages. As such, it becomes increasingly more difficult to develop a robust model that generalizes across a wide array of input examples. In this paper, we propose a novel training technique for the CWI task based on domain adaptation to improve the target character and context representations. This technique addresses the problem of working with multiple domains, inasmuch as it creates a way of smoothing the differences between the explored datasets. Moreover, we also propose a similar auxiliary task, namely text simplification, that can be used to complement lexical complexity prediction. Our model obtains a boost of up to 2.42% in terms of Pearson Correlation Coefficients in contrast to vanilla training techniques, when considering the CompLex from the Lexical Complexity Prediction 2021 dataset. At the same time, we obtain an increase of 3% in Pearson scores, while considering a cross-lingual setup relying on the Complex Word Identification 2018 dataset. In addition, our model yields state-of-the-art results in terms of Mean Absolute Error.
Zero-shot stance detection (ZSSD) aims to detect the stance for an unseen target during the inference stage. In this paper, we propose a joint contrastive learning (JointCL) framework, which consists of stance contrastive learning and target-aware prototypical graph contrastive learning. Specifically, a stance contrastive learning strategy is employed to better generalize stance features for unseen targets. Further, we build a prototypical graph for each instance to learn the target-based representation, in which the prototypes are deployed as a bridge to share the graph structures between the known targets and the unseen ones. Then a novel target-aware prototypical graph contrastive learning strategy is devised to generalize the reasoning ability of target-based stance representations to the unseen targets. Extensive experiments on three benchmark datasets show that the proposed approach achieves state-of-the-art performance in the ZSSD task.
The recent success of reinforcement learning (RL) in solving complex tasks is often attributed to its capacity to explore and exploit an environment. Sample efficiency is usually not an issue for tasks with cheap simulators to sample data online. On the other hand, Task-oriented Dialogues (ToD) are usually learnt from offline data collected using human demonstrations. Collecting diverse demonstrations and annotating them is expensive. Unfortunately, RL policy trained on off-policy data are prone to issues of bias and generalization, which are further exacerbated by stochasticity in human response and non-markovian nature of annotated belief state of a dialogue management system. To this end, we propose a batch-RL framework for ToD policy learning: Causal-aware Safe Policy Improvement (CASPI). CASPI includes a mechanism to learn fine-grained reward that captures intention behind human response and also offers guarantee on dialogue policy’s performance against a baseline. We demonstrate the effectiveness of this framework on end-to-end dialogue task of the Multiwoz2.0 dataset. The proposed method outperforms the current state of the art. Further more we demonstrate sample efficiency, where our method trained only on 20% of the data, are comparable to current state of the art method trained on 100% data on two out of there evaluation metrics.
As a more natural and intelligent interaction manner, multimodal task-oriented dialog system recently has received great attention and many remarkable progresses have been achieved. Nevertheless, almost all existing studies follow the pipeline to first learn intra-modal features separately and then conduct simple feature concatenation or attention-based feature fusion to generate responses, which hampers them from learning inter-modal interactions and conducting cross-modal feature alignment for generating more intention-aware responses. To address these issues, we propose UniTranSeR, a Unified Transformer Semantic Representation framework with feature alignment and intention reasoning for multimodal dialog systems. Specifically, we first embed the multimodal features into a unified Transformer semantic space to prompt inter-modal interactions, and then devise a feature alignment and intention reasoning (FAIR) layer to perform cross-modal entity alignment and fine-grained key-value reasoning, so as to effectively identify user’s intention for generating more accurate responses. Experimental results verify the effectiveness of UniTranSeR, showing that it significantly outperforms state-of-the-art approaches on the representative MMD dataset.
Dialogue State Tracking (DST) aims to keep track of users’ intentions during the course of a conversation. In DST, modelling the relations among domains and slots is still an under-studied problem. Existing approaches that have considered such relations generally fall short in: (1) fusing prior slot-domain membership relations and dialogue-aware dynamic slot relations explicitly, and (2) generalizing to unseen domains. To address these issues, we propose a novel Dynamic Schema Graph Fusion Network (DSGFNet), which generates a dynamic schema graph to explicitly fuse the prior slot-domain membership relations and dialogue-aware dynamic slot relations. It also uses the schemata to facilitate knowledge transfer to new domains. DSGFNet consists of a dialogue utterance encoder, a schema graph encoder, a dialogue-aware schema graph evolving network, and a schema graph enhanced dialogue state decoder. Empirical results on benchmark datasets (i.e., SGD, MultiWOZ2.1, and MultiWOZ2.2), show that DSGFNet outperforms existing methods.
Recent progress of abstractive text summarization largely relies on large pre-trained sequence-to-sequence Transformer models, which are computationally expensive. This paper aims to distill these large models into smaller ones for faster inference and with minimal performance loss. Pseudo-labeling based methods are popular in sequence-to-sequence model distillation. In this paper, we find simply manipulating attention temperatures in Transformers can make pseudo labels easier to learn for student models. Our experiments on three summarization datasets show our proposed method consistently improves vanilla pseudo-labeling based methods. Further empirical analysis shows that both pseudo labels and summaries produced by our students are shorter and more abstractive.
This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.
Processing open-domain Chinese texts has been a critical bottleneck in computational linguistics for decades, partially because text segmentation and word discovery often entangle with each other in this challenging scenario. No existing methods yet can achieve effective text segmentation and word discovery simultaneously in open domain. This study fills in this gap by proposing a novel method called TopWORDS-Seg based on Bayesian inference, which enjoys robust performance and transparent interpretation when no training corpus and domain vocabulary are available. Advantages of TopWORDS-Seg are demonstrated by a series of experimental studies.
Cross-lingual named entity recognition task is one of the critical problems for evaluating the potential transfer learning techniques on low resource languages. Knowledge distillation using pre-trained multilingual language models between source and target languages have shown their superiority in transfer. However, existing cross-lingual distillation models merely consider the potential transferability between two identical single tasks across both domains. Other possible auxiliary tasks to improve the learning performance have not been fully investigated. In this study, based on the knowledge distillation framework and multi-task learning, we introduce the similarity metric model as an auxiliary task to improve the cross-lingual NER performance on the target domain. Specifically, an entity recognizer and a similarity evaluator are first trained in parallel as two teachers from the source domain. Then, two tasks in the student model are supervised by these teachers simultaneously. Empirical studies on the three datasets across 7 different languages confirm the effectiveness of the proposed model.
Although current state-of-the-art Transformer-based solutions succeeded in a wide range for single-document NLP tasks, they still struggle to address multi-input tasks such as multi-document summarization. Many solutions truncate the inputs, thus ignoring potential summary-relevant contents, which is unacceptable in the medical domain where each information can be vital. Others leverage linear model approximations to apply multi-input concatenation, worsening the results because all information is considered, even if it is conflicting or noisy with respect to a shared background. Despite the importance and social impact of medicine, there are no ad-hoc solutions for multi-document summarization. For this reason, we propose a novel discriminative marginalized probabilistic method (DAMEN) trained to discriminate critical information from a cluster of topic-related medical documents and generate a multi-document summary via token probability marginalization. Results prove we outperform the previous state-of-the-art on a biomedical dataset for multi-document summarization of systematic literature reviews. Moreover, we perform extensive ablation studies to motivate the design choices and prove the importance of each module of our method.
Conventional wisdom in pruning Transformer-based language models is that pruning reduces the model expressiveness and thus is more likely to underfit rather than overfit. However, under the trending pretrain-and-finetune paradigm, we postulate a counter-traditional hypothesis, that is: pruning increases the risk of overfitting when performed at the fine-tuning phase. In this paper, we aim to address the overfitting problem and improve pruning performance via progressive knowledge distillation with error-bound properties. We show for the first time that reducing the risk of overfitting can help the effectiveness of pruning under the pretrain-and-finetune paradigm. Ablation studies and experiments on the GLUE benchmark show that our method outperforms the leading competitors across different tasks.
We propose a novel data-augmentation technique for neural machine translation based on ROT-k ciphertexts. ROT-k is a simple letter substitution cipher that replaces a letter in the plaintext with the kth letter after it in the alphabet. We first generate multiple ROT-k ciphertexts using different values of k for the plaintext which is the source side of the parallel data. We then leverage this enciphered training data along with the original parallel data via multi-source training to improve neural machine translation. Our method, CipherDAug, uses a co-regularization-inspired training procedure, requires no external data sources other than the original training data, and uses a standard Transformer to outperform strong data augmentation techniques on several datasets by a significant margin. This technique combines easily with existing approaches to data augmentation, and yields particularly strong results in low-resource settings.
Pre-trained multilingual language models such as mBERT and XLM-R have demonstrated great potential for zero-shot cross-lingual transfer to low web-resource languages (LRL). However, due to limited model capacity, the large difference in the sizes of available monolingual corpora between high web-resource languages (HRL) and LRLs does not provide enough scope of co-embedding the LRL with the HRL, thereby affecting the downstream task performance of LRLs. In this paper, we argue that relatedness among languages in a language family along the dimension of lexical overlap may be leveraged to overcome some of the corpora limitations of LRLs. We propose Overlap BPE (OBPE), a simple yet effective modification to the BPE vocabulary generation algorithm which enhances overlap across related languages. Through extensive experiments on multiple NLP tasks and datasets, we observe that OBPE generates a vocabulary that increases the representation of LRLs via tokens shared with HRLs. This results in improved zero-shot transfer from related HRLs to LRLs without reducing HRL representation and accuracy. Unlike previous studies that dismissed the importance of token-overlap, we show that in the low-resource related language setting, token overlap matters. Synthetically reducing the overlap to zero can cause as much as a four-fold drop in zero-shot transfer accuracy.
Self-attention mechanism has been shown to be an effective approach for capturing global context dependencies in sequence modeling, but it suffers from quadratic complexity in time and memory usage. Due to the sparsity of the attention matrix, much computation is redundant. Therefore, in this paper, we design an efficient Transformer architecture, named Fourier Sparse Attention for Transformer (FSAT), for fast long-range sequence modeling. We provide a brand-new perspective for constructing sparse attention matrix, i.e. making the sparse attention matrix predictable. Two core sub-modules are: (1) A fast Fourier transform based hidden state cross module, which captures and pools L2 semantic combinations in 𝒪(Llog L) time complexity. (2) A sparse attention matrix estimation module, which predicts dominant elements of an attention matrix based on the output of the previous hidden state cross module. By reparameterization and gradient truncation, FSAT successfully learned the index of dominant elements. The overall complexity about the sequence length is reduced from 𝒪(L2) to 𝒪(Llog L). Extensive experiments (natural language, vision, and math) show that FSAT remarkably outperforms the standard multi-head attention and its variants in various long-sequence tasks with low computational costs, and achieves new state-of-the-art results on the Long Range Arena benchmark.
In modern recommender systems, there are usually comments or reviews from users that justify their ratings for different items. Trained on such textual corpus, explainable recommendation models learn to discover user interests and generate personalized explanations. Though able to provide plausible explanations, existing models tend to generate repeated sentences for different items or empty sentences with insufficient details. This begs an interesting question: can we immerse the models in a multimodal environment to gain proper awareness of real-world concepts and alleviate above shortcomings? To this end, we propose a visually-enhanced approach named METER with the help of visualization generation and text–image matching discrimination: the explainable recommendation model is encouraged to visualize what it refers to while incurring a penalty if the visualization is incongruent with the textual explanation. Experimental results and a manual assessment demonstrate that our approach can improve not only the text quality but also the diversity and explainability of the generated explanations.
New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes. It is a critical task for the development and service expansion of a practical dialogue system. Despite its importance, this problem remains under-explored in the literature. Existing approaches typically rely on a large amount of labeled utterances and employ pseudo-labeling methods for representation learning and clustering, which are label-intensive, inefficient, and inaccurate. In this paper, we provide new solutions to two important research questions for new intent discovery: (1) how to learn semantic utterance representations and (2) how to better cluster utterances. Particularly, we first propose a multi-task pre-training strategy to leverage rich unlabeled data along with external labeled data for representation learning. Then, we design a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering. Extensive experiments on three intent recognition benchmarks demonstrate the high effectiveness of our proposed method, which outperforms state-of-the-art methods by a large margin in both unsupervised and semi-supervised scenarios. The source code will be available at https://github.com/zhang-yu-wei/MTP-CLNN.
Decisions on state-level policies have a deep effect on many aspects of our everyday life, such as health-care and education access. However, there is little understanding of how these policies and decisions are being formed in the legislative process. We take a data-driven approach by decoding the impact of legislation on relevant stakeholders (e.g., teachers in education bills) to understand legislators’ decision-making process and votes. We build a new dataset for multiple US states that interconnects multiple sources of data including bills, stakeholders, legislators, and money donors. Next, we develop a textual graph-based model to embed and analyze state bills. Our model predicts winners/losers of bills and then utilizes them to better determine the legislative body’s vote breakdown according to demographic/ideological criteria, e.g., gender.
Tangled multi-party dialogue contexts lead to challenges for dialogue reading comprehension, where multiple dialogue threads flow simultaneously within a common dialogue record, increasing difficulties in understanding the dialogue history for both human and machine. Previous studies mainly focus on utterance encoding methods with carefully designed features but pay inadequate attention to characteristic features of the structure of dialogues. We specially take structure factors into account and design a novel model for dialogue disentangling. Based on the fact that dialogues are constructed on successive participation and interactions between speakers, we model structural information of dialogues in two aspects: 1)speaker property that indicates whom a message is from, and 2) reference dependency that shows whom a message may refer to. The proposed method achieves new state-of-the-art on the Ubuntu IRC benchmark dataset and contributes to dialogue-related comprehension.
Empathetic dialogue assembles emotion understanding, feeling projection, and appropriate response generation. Existing work for empathetic dialogue generation concentrates on the two-party conversation scenario. Multi-party dialogues, however, are pervasive in reality. Furthermore, emotion and sensibility are typically confused; a refined empathy analysis is needed for comprehending fragile and nuanced human feelings. We address these issues by proposing a novel task called Multi-Party Empathetic Dialogue Generation in this study. Additionally, a Static-Dynamic model for Multi-Party Empathetic Dialogue Generation, SDMPED, is introduced as a baseline by exploring the static sensibility and dynamic emotion for the multi-party empathetic dialogue learning, the aspects that help SDMPED achieve the state-of-the-art performance.
Applying existing methods to emotional support conversation—which provides valuable assistance to people who are in need—has two major limitations: (a) they generally employ a conversation-level emotion label, which is too coarse-grained to capture user’s instant mental state; (b) most of them focus on expressing empathy in the response(s) rather than gradually reducing user’s distress. To address the problems, we propose a novel model MISC, which firstly infers the user’s fine-grained emotional status, and then responds skillfully using a mixture of strategy. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and reveal the benefits of fine-grained emotion understanding as well as mixed-up strategy modeling.