| Total: 1653
Invertible networks have various benefits for image denoising since they are lightweight, information-lossless, and memory-saving during back-propagation. However, applying invertible models to remove noise is challenging because the input is noisy, and the reversed output is clean, following two different distributions. We propose an invertible denoising network, InvDN, to address this challenge. InvDN transforms the noisy input into a low-resolution clean image and a latent representation containing noise. To discard noise and restore the clean image, InvDN replaces the noisy latent representation with another one sampled from a prior distribution during reversion. The denoising performance of InvDN is better than all the existing competitive models, achieving a new state-of-the-art result for the SIDD dataset while enjoying less run time. Moreover, the size of InvDN is far smaller, only having 4.2% of the number of parameters compared to the most recently proposed DANet. Further, via manipulating the noisy latent representation, InvDN is also able to generate noise more similar to the original one. Our code is available at: https://github.com/Yang-Liu1082/InvDN.git.
A video prediction model that generalizes to diverse scenes would enable intelligent agents such as robots to perform a variety of tasks via planning with the model. However, while existing video prediction models have produced promising results on small datasets, they suffer from severe underfitting when trained on large and diverse datasets. To address this underfitting challenge, we first observe that the ability to train larger video prediction models is often bottlenecked by the memory constraints of GPUs or TPUs. In parallel, deep hierarchical latent variable models can produce higher quality predictions by capturing the multi-level stochasticity of future observations, but end-to-end optimization of such models is notably difficult. Our key insight is that greedy and modular optimization of hierarchical autoencoders can simultaneously address both the memory constraints and the optimization challenges of large-scale video prediction. We introduce Greedy Hierarchical Variational Autoencoders (GHVAEs), a method that learns high-fidelity video predictions by greedily training each level of a hierarchical autoencoder. In comparison to state-of-the-art models, GHVAEs provide 17-55% gains in prediction performance on four video datasets, a 35-40% higher success rate on real robot tasks, and can improve performance monotonically by simply adding more modules.
Deep neural networks for video classification, just like image classification networks, may be subjected to adversarial manipulation. The main difference between image classifiers and video classifiers is that the latter usually use temporal information contained within the video. In this work we present a manipulation scheme for fooling video classifiers by introducing a flickering temporal perturbation that in some cases may be unnoticeable by human observers and is implementable in the real world. After demonstrating the manipulation of action classification of single videos, we generalize the procedure to make universal adversarial perturbation, achieving high fooling ratio. In addition, we generalize the universal perturbation and produce a temporal-invariant perturbation, which can be applied to the video without synchronizing the perturbation to the input. The attack was implemented on several target models and the transferability of the attack was demonstrated. These properties allow us to bridge the gap between simulated environment and real-world application, as will be demonstrated in this paper for the first time for an over-the-air flickering attack.
Recently, referring image segmentation has aroused widespread interest. Previous methods perform the multi-modal fusion between language and vision at the decoding side of the network. And, linguistic feature interacts with visual feature of each scale separately, which ignores the continuous guidance of language to multi-scale visual features. In this work, we propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network, and uses language to refine the multi-modal features progressively. Moreover, a co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features, which can promote the consistent of the cross-modal information representation in the semantic space. Finally, we propose a boundary enhancement module (BEM) to make the network pay more attention to the fine structure. The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance under different evaluation metrics without any post-processing.
Active stereo cameras that recover depth from structured light captures have become a cornerstone sensor modality for 3D scene reconstruction and understanding tasks across application domains. Active stereo cameras project a pseudo-random dot pattern on object surfaces to extract disparity independently of object texture. Such hand-crafted patterns are designed in isolation from the scene statistics, ambient illumination conditions, and the reconstruction method. In this work, we propose a method to jointly learn structured illumination and reconstruction, parameterized by a diffractive optical element and a neural network, in an end-to-end fashion. To this end, we introduce a differentiable image formation model for active stereo, relying on both wave and geometric optics, and a trinocular reconstruction network. The jointly optimized pattern, which we dub "Polka Lines," together with the reconstruction network, makes accurate active-stereo depth estimates across imaging conditions. We validate the proposed method in simulation and using with an experimental prototype, and we demonstrate several variants of the Polka Lines patterns specialized to the illumination conditions.
Although recent inpainting approaches have demonstrated significant improvement with deep neural networks, they still suffer from artifacts such as blunt structures and abrupt colors when filling in the missing regions. To address these issues, we propose an external-internal inpainting scheme with a monochromic bottleneck that helps image inpainting models remove these artifacts. In the external learning stage, we reconstruct missing structures and details in the monochromic space to reduce the learning dimension. In the internal learning stage, we propose a novel internal color propagation method with progressive learning strategies for consistent color restoration. Extensive experiments demonstrate that our proposed scheme helps image inpainting models produce more structure-preserved and visually compelling results.
The classical matching pipeline used for visual localization typically involves three steps: (i) local feature detection and description, (ii) feature matching, and (iii) outlier rejection. Recently emerged correspondence networks propose to perform those steps inside a single network but suffer from low matching resolution due to the memory bottleneck. In this work, we propose a new perspective to estimate correspondences in a detect-to-refine manner, where we first predict patch-level match proposals and then refine them. We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals and jointly rejecting outlier matches with confidence scores. Patch2Pix is weakly supervised to learn correspondences that are consistent with the epipolar geometry of an input image pair. We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks. In addition, we show that our learned refinement generalizes to fully-supervised methods without re-training, which leads us to state-of-the-art localization performance. The code is available at https://github.com/GrumpyZhou/patch2pix.
Occluded person re-identification (Re-ID) is a challenging task as persons are frequently occluded by various obstacles or other persons, especially in the crowd scenario. To address these issues, we propose a novel end-to-end Part-Aware Transformer (PAT) for occluded person Re-ID through diverse part discovery via a transformer encoder-decoder architecture, including a pixel context based transformer encoder and a part prototype based transformer decoder. The proposed PAT model enjoys several merits. First, to the best of our knowledge, this is the first work to exploit the transformer encoder-decoder architecture for occluded person Re-ID in a unified deep model. Second, to learn part prototypes well with only identity labels, we design two effective mechanisms including part diversity and part discriminability. Consequently, we can achieve diverse part discovery for occluded person Re-ID in a weakly supervised manner. Extensive experimental results on six challenging benchmarks for three tasks (occluded, partial and holistic Re-ID) demonstrate that our proposed PAT performs favorably against stat-of-the-art methods.
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If "yes", the sample is from a certain class, and "no" otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.
Recently, person re-identification (ReID) has vastly benefited from the surging waves of data-driven methods. However, these methods are still not reliable enough for real-world deployments, due to the insufficient generalization capability of the models learned on existing benchmarks that have limitations in multiple aspects, including limited data scale, capture condition variations, and appearance diversities. To this end, we collect a new dataset named Person30K with the following distinct features: 1) a very large scale containing 1.38 million images of 30K identities, 2) a large capture system containing 6,497 cameras deployed at 89 different sites, 3) abundant sample diversities including varied backgrounds and diverse person poses. Furthermore, we propose a domain generalization ReID method, dual-meta generalization network (DMG-Net), to exploit the merits of meta-learning in both the training procedure and the metric space learning. Concretely, we design a "learning then generalization evaluation" meta-training procedure and a meta-discrimination loss to enhance model generalization and discrimination capabilities. Comprehensive experiments validate the effectiveness of our DMG-Net. (Dataset and code will be released.)
Visual Place Recognition is a challenging task for robotics and autonomous systems, which must deal with the twin problems of appearance and viewpoint change in an always changing world. This paper introduces Patch-NetVLAD, which provides a novel formulation for combining the advantages of both local and global descriptor methods by deriving patch-level features from NetVLAD residuals. Unlike the fixed spatial neighborhood regime of existing local keypoint features, our method enables aggregation and matching of deep-learned local features defined over the feature-space grid. We further introduce a multi-scale fusion of patch features that have complementary scales (i.e. patch sizes) via an integral feature space and show that the fused features are highly invariant to both condition (season, structure, and illumination) and viewpoint (translation and rotation) changes. Patch-NetVLAD achieves state-of-the-art visual place recognition results in computationally limited scenarios, validated on a range of challenging real-world datasets, including winning the Facebook Mapillary Visual Place Recognition Challenge at ECCV2020. It is also adaptable to user requirements, with a speed-optimised version operating over an order of magnitude faster than the state-of-the-art. By combining superior performance with improved computational efficiency in a configurable framework, Patch-NetVLAD is well suited to enhance both stand-alone place recognition capabilities and the overall performance of SLAM systems.
Stereophonic audio, especially binaural audio, plays an essential role in immersive viewing environments. Recent research has explored generating stereophonic audios guided by visual cues and multi-channel audio collections in a fully-supervised manner. However, due to the requirement of professional recording devices, existing datasets are limited in scale and variety, which impedes the generalization of supervised methods to real-world scenarios. In this work, we propose PseudoBinaural, an effective pipeline that is free of binaural recordings. The key insight is to carefully build pseudo visual-stereo pairs with mono data for training. Specifically, we leverage spherical harmonic decomposition and head-related impulse response (HRIR) to identify the relationship between the location of a sound source and the received binaural audio. Then in the visual modality, corresponding visual cues of the mono data are manually placed at sound source positions to form the pairs. Compared to fully-supervised paradigms, our binaural-recording-free pipeline shows great stability in the cross-dataset evaluation and comparable performance under subjective preference. Moreover, combined with binaural recorded data, our method is able to further boost the performance of binaural audio generation under supervised settings.
Gaze target detection aims to infer where each person in a scene is looking. Existing works focus on 2D gaze and 2D saliency, but fail to exploit 3D contexts. In this work, we propose a three-stage method to simulate the human gaze inference behavior in 3D space. In the first stage, we introduce a coarse-to-fine strategy to robustly estimate a 3D gaze orientation from the head. The predicted gaze is decomposed into a planar gaze on the image plane and a depth-channel gaze. In the second stage, we develop a Dual Attention Module (DAM), which takes the planar gaze to produce the filed of view and masks interfering objects regulated by depth information according to the depth-channel gaze. In the third stage, we use the generated dual attention as guidance to perform two sub-tasks: (1) identifying whether the gaze target is inside or out of the image; (2) locating the target if inside. Extensive experiments demonstrate that our approach performs favorably against state-of-the-art methods on GazeFollow and VideoAttentionTarget datasets.
Recent works on localization and mapping from privacy preserving line features have made significant progress towards addressing the privacy concerns arising from cloud-based solutions in mixed reality and robotics. The requirement for calibrated cameras is a fundamental limitation for these approaches, which prevents their application in many crowd-sourced mapping scenarios. In this paper, we propose a solution to the uncalibrated privacy preserving localization and mapping problem. Our approach simultaneously recovers the intrinsic and extrinsic calibration of a camera from line-features only. This enables uncalibrated devices to both localize themselves within an existing map as well as contribute to the map, while preserving the privacy of the image contents. Furthermore, we also derive a solution to bootstrapping maps from scratch using only uncalibrated devices. Our approach provides comparable performance to the calibrated scenario and the privacy compromising alternatives based on traditional point features.
In medical image analysis, it is typical to collect multiple annotations, each from a different clinical expert or rater, in the expectation that possible diagnostic errors could be mitigated. Meanwhile, from the computer vision practitioner viewpoint, it has been a common practice to adopt the ground-truth obtained via either the majority-vote or simply one annotation from a preferred rater. This process, however, tends to overlook the rich information of agreement or disagreement ingrained in the raw multi-rater annotations. To address this issue, we propose to explicitly model the multi-rater (dis-)agreement, dubbed MRNet, which has two main contributions. First, an expertise-aware inferring module or EIM is devised to embed the expertise level of individual raters as prior knowledge, to form high-level semantic features. Second, our approach is capable of reconstructing multi-rater gradings from coarse predictions, with the multi-rater (dis-)agreement cues being further exploited to improve the segmentation performance. To our knowledge, our work is the first in producing calibrated predictions under different expertise levels for medical image segmentation. Extensive empirical experiments are conducted across five medical segmentation tasks of diverse imaging modalities. In these experiments, superior performance of our MRNet is observed comparing to the state-of-the-arts, indicating the effectiveness and applicability of our MRNet toward a wide range of medical segmentation tasks.
We propose a novel point annotated setting for the weakly semi-supervised object detection task, in which the dataset comprises small fully annotated images and large weakly annotated images by points. It achieves a balance between tremendous annotation burden and detection performance. Based on this setting, we analyze existing detectors and find that these detectors have difficulty in fully exploiting the power of the annotated points. To solve this, we introduce a new detector, Point DETR, which extends DETR by adding a point encoder. Extensive experiments conducted on MS-COCO dataset in various data settings show the effectiveness of our method. In particular, when using 20% fully labeled data from COCO, our detector achieves a promising performance, 33.3 AP, which outperforms a strong baseline (FCOS) by 2.0 AP, and we demonstrate the point annotations bring over 10 points in various AR metrics.
Recent development of Under-Display Camera (UDC) systems provides a true bezel-less and notch-free viewing experience on smartphones (and TV, laptops, tablets), while allowing images to be captured from the selfie camera embedded underneath. In a typical UDC system, the microstructure of the semi-transparent organic light-emitting diode (OLED) pixel array attenuates and diffracts the incident light on the camera, resulting in significant image quality degradation. Oftentimes, noise, flare, haze, and blur can be observed in UDC images. In this work, we aim to analyze and tackle the aforementioned degradation problems. We define a physics-based image formation model to better understand the degradation. In addition, we utilize one of the world's first commodity UDC smartphone prototypes to measure the real-world Point Spread Function (PSF) of the UDC system, and provide a model-based data synthesis pipeline to generate realistically degraded images. We specially design a new domain knowledge-enabled Dynamic Skip Connection Network (DISCNet) to restore the UDC images. We demonstrate the effectiveness of our method through extensive experiments on both synthetic and real UDC data. Our physics-based image formation model and proposed DISCNet can provide foundations for further exploration in UDC image restoration, and even for general diffraction artifact removal in a broader sense.
It is nontrivial to store rapidly growing big data nowadays, which demands high-performance lossless compression techniques. Likelihood-based generative models have witnessed their success on lossless compression, where flow based models are desirable in allowing exact data likelihood optimisation with bijective mappings. However, common continuous flows are in contradiction with the discreteness of coding schemes, which requires either 1) imposing strict constraints on flow models that degrades the performance or 2) coding numerous bijective mapping errors which reduces the efficiency. In this paper, we investigate volume preserving flows for lossless compression and show that a bijective mapping without error is possible. We propose Numerical Invertible Volume Preserving Flow (iVPF) which is derived from the general volume preserving flows. By introducing novel computation algorithms on flow models, an exact bijective mapping is achieved without any numerical error. We also propose a lossless compression algorithm based on iVPF. Experiments on various datasets show that the algorithm based on iVPF achieves state-of-the-art compression ratio over lightweight compression algorithms.
In this paper, we present a regression-based pose recognition method using cascade Transformers. One way to categorize the existing approaches in this domain is to separate them into 1). heatmap-based and 2). regression-based. In general, heatmap-based methods achieve higher accuracy but are subject to various heuristic designs (not end-to-end mostly), whereas regression-based approaches attain relatively lower accuracy but they have less intermediate non-differentiable steps. Here we utilize the encoder-decoder structure in Transformers to perform regression-based person and keypoint detection that is general-purpose and requires less heuristic design compared with the existing approaches. We demonstrate the keypoint hypothesis (query) refinement process across different self-attention layers to reveal the recursive self-attention mechanism in Transformers. In the experiments, we report competitive results for pose recognition when compared with the competing regression-based methods.
In this paper, we delve into semi-supervised object detection where unlabeled images are leveraged to break through the upper bound of fully-supervised object detection models. Previous semi-supervised methods based on pseudo labels are severely degenerated by noise and prone to overfit to noisy labels, thus are deficient in learning different unlabeled knowledge well. To address this issue, we propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection. We comprehensively consider divergent types of unlabeled images according to their difficulty levels, utilize them in different phases and ensemble models from different phases together to generate ultimate results. Image uncertainty guided easy data selection and region uncertainty guided RoI Re-weighting are involved in multi-phase learning and enable the detector to concentrate on more certain knowledge. Through extensive experiments on PASCAL VOC and MS COCO, we demonstrate that our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin, more than 3% on VOC and 2% on COCO.
Existing person search methods integrate person detection and re-identification (re-ID) module into a unified system. Though promising results have been achieved, the misalignment problem, which commonly occurs in person search, limits the discriminative feature representation for re-ID. To overcome this limitation, we introduce a novel framework to learn the discriminative representation by utilizing prototype in OIM loss. Unlike conventional methods using prototype as a representation of person identity, we utilize it as guidance to allow the attention network to consistently highlight multiple instances across different poses. Moreover, we propose a new prototype update scheme with adaptive momentum to increase the discriminative ability across different instances. Extensive ablation experiments demonstrate that our method can significantly enhance the feature discriminative power, outperforming the state-of-the-art results on two person search benchmarks including CUHK-SYSU and PRW.
Single image dehazing is a challenging ill-posed problem due to the severe information degeneration. However, existing deep learning based dehazing methods only adopt clear images as positive samples to guide the training of dehazing network while negative information is unexploited. Moreover, most of them focus on strengthening the dehazing network with an increase of depth and width, leading to a significant requirement of computation and memory. In this paper, we propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples, respectively. CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space. Furthermore, considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like (AE) framework. It involves an adaptive mixup operation and a dynamic feature enhancement module, which can benefit from preserving information flow adaptively and expanding the receptive field to improve the network's transformation capability, respectively. We term our dehazing network with autoencoder and contrastive regularization as AECR-Net. The extensive experiments on synthetic and real-world datasets demonstrate that our AECR-Net surpass the state-of-the-art approaches. The code is released in https://github.com/GlassyWu/AECR-Net.
Recent works on two-stage cross-domain detection have widely explored the local feature patterns to achieve more accurate adaptation results. These methods heavily rely on the region proposal mechanisms and ROI-based instance-level features to design fine-grained feature alignment modules with respect to the foreground objects. However, for one-stage detectors, it is hard or even impossible to obtain explicit instance-level features in the detection pipelines. Motivated by this, we propose an Implicit Instance-Invariant Network (I3Net), which is tailored for adapting one-stage detectors and implicitly learns instance-invariant features via exploiting the natural characteristics of deep features in different layers. Specifically, we facilitate the adaptation from three aspects: (1) Dynamic and Class-Balanced Reweighting (DCBR) strategy, which considers the coexistence of intra-domain and intra-class variations to assign larger weights to those sample-scarce categories and easy-to-adapt samples; (2) Category-aware Object Pattern Matching (COPM) module, which boosts the cross-domain foreground objects matching guided by the categorical information and suppresses the uninformative background features; (3) Regularized Joint Category Alignment (RJCA) module, which jointly enforces the category alignment at different domain-specific layers with a consistency regularization. Experiments reveal that I3Net exceeds the state-of-the-art performance on benchmark datasets.
We consider the challenging multi-person 3D body mesh estimation task in this work. Existing methods are mostly two-stage based--one stage for person localization and the other stage for individual body mesh estimation, leading to redundant pipelines with high computation cost and degraded performance for complex scenes (e.g., occluded person instances). In this work, we present a single stage model, Body Meshes as Points (BMP), to simplify the pipeline and lift both efficiency and performance. In particular, BMP adopts a new method that represents multiple person instances as points in the spatial-depth space where each point is associated with one body mesh. Hinging on such representations, BMP can directly predict body meshes for multiple persons in a single stage by concurrently localizing person instance points and estimating the corresponding body meshes. To better reason about depth ordering of all the persons within the same scene, BMP designs a simple yet effective inter-instance ordinal depth loss to obtain depth-coherent body mesh estimation. BMP also introduces a novel keypoint-aware augmentation to enhance model robustness to occluded person instances. Comprehensive experiments on benchmarks Panoptic, MuPoTS-3D and 3DPW clearly demonstrate the state-of-the-art efficiency of BMP for multi-person body mesh estimation, together with outstanding accuracy. Code can be found at: https://github.com/jfzhang95/BMP.
Acquisition and rendering of photo-realistic human heads is a highly challenging research problem of particular importance for virtual telepresence. Currently, the highest quality is achieved by volumetric approaches trained in a person-specific manner on multi-view data. These models better represent fine structure, such as hair, compared to simpler mesh-based models. Volumetric models typically employ a global code to represent facial expressions, such that they can be driven by a small set of animation parameters. While such architectures achieve impressive rendering quality, they can not easily be extended to the multi-identity setting. In this paper, we devise a novel approach for predicting volumetric avatars of the human head given just a small number of inputs. We enable generalization across identities by a novel parameterization that combines neural radiance fields with local, pixel-aligned features extracted directly from the inputs, thus side-stepping the need for very deep or complex networks. Our approach is trained in an end-to-end manner solely based on a photometric re-rendering loss without requiring explicit 3D supervision. We demonstrate that our approach outperforms the existing state of the art in terms of quality and is able to generate faithful facial expressions in a multi-identity setting.