Chae_Doppler-Aware_LiDAR-RADAR_Fusion_for_Weather-Robust_3D_Detection@ICCV2025@CVF

Total: 1

#1 Doppler-Aware LiDAR-RADAR Fusion for Weather-Robust 3D Detection [PDF] [Copy] [Kimi] [REL]

Authors: Yujeong Chae, Heejun Park, Hyeonseong Kim, Kuk-Jin Yoon

Robust 3D object detection across diverse weather con- ditions is crucial for safe autonomous driving, and RADAR is increasingly leveraged for its resilience in adverse weather. Recent advancements have explored 4D RADAR and LiDAR-RADAR fusion to enhance 3D perception capabilities, specifically targeting weather robustness. However, existing methods often handle Doppler in ways that are not well-suited for multi-modal settings or lack tailored encoding strategies, hindering effective feature fusion and performance. To address these shortcomings, we propose a novel Doppler-aware LiDAR-4D RADAR fusion (DLR-Fusion) framework for robust 3D object detection. We introduce a multi-path iterative interaction module that integrates LiDAR, RADAR power, and Doppler, enabling a structured feature fusion process. Doppler highlights dynamic regions, refining RADAR power and enhancing LiDAR features across multiple stages, improving detection confidence. Extensive experiments on the K-RADAR dataset demonstrate that our approach effectively exploits Doppler information, achieving state-of-the-art performance in both normal and adverse weather conditions.

Subject: ICCV.2025 - Poster