Total: 1
Transformers have become the cornerstone of modern AI. Unlike traditional architectures, transformers exhibit a distinctive characteristic: diverse types of building blocks, such as embedding layers, normalization layers, self-attention mechanisms, and point-wise feed-forward networks, work collaboratively. Understanding the disparities and interactions among these blocks is therefore important.In this paper, we uncover a clear **sharpness disparity** across these blocks, which intriguingly emerges early in training and persists throughout the training process.Building on this insight, we propose a novel **Blockwise Learning Rate (LR)** strategy to accelerate large language model (LLM) pre-training. Specifically, by integrating Blockwise LR into AdamW, we consistently achieve lower terminal loss and nearly $2\times$ speedup compared to vanilla AdamW. This improvement is demonstrated across GPT-2 and LLaMA models, with model sizes ranging from 0.12B to 1.1B and datasets including OpenWebText and MiniPile.Finally, we incorporate Blockwise LR into Adam-mini (Zhang et al., 2024), a recently proposed memory-efficient variant of Adam, achieving a combined $2\times$ speedup and $2\times$ memory savings. These results underscore the potential of leveraging the sharpness disparity principle to improve LLM training.