Total: 1
Optimal transport (OT) has enjoyed great success in machine learning as a principled way to align datasets via a least-cost correspondence, driven in large part by the runtime efficiency of the Sinkhorn algorithm (Cuturi, 2013). However, Sinkhorn has quadratic space complexity in the number of points, limiting scalability to larger datasets. Low-rank OT achieves linear-space complexity, but by definition, cannot compute a one-to-one correspondence between points. When the optimal transport problem is an assignment problem between datasets then an optimal mapping, known as the _Monge map_, is guaranteed to be a bijection. In this setting, we show that the factors of an optimal low-rank coupling co-cluster each point with its image under the Monge map. We leverage this invariant to derive an algorithm, _Hierarchical Refinement_ (`HiRef`), that dynamically constructs a multiscale partition of each dataset using low-rank OT subproblems, culminating in a bijective coupling. Hierarchical Refinement uses linear space and has log-linear runtime, retaining the space advantage of low-rank OT while overcoming its limited resolution. We demonstrate the advantages of Hierarchical Refinement on several datasets, including ones containing over a million points, scaling full-rank OT to problems previously beyond Sinkhorn's reach.