EMNLP.2018

Total: 578

#1 Privacy-preserving Neural Representations of Text [PDF] [Copy] [Kimi1]

Authors: Maximin Coavoux ; Shashi Narayan ; Shay B. Cohen

This article deals with adversarial attacks towards deep learning systems for Natural Language Processing (NLP), in the context of privacy protection. We study a specific type of attack: an attacker eavesdrops on the hidden representations of a neural text classifier and tries to recover information about the input text. Such scenario may arise in situations when the computation of a neural network is shared across multiple devices, e.g. some hidden representation is computed by a user’s device and sent to a cloud-based model. We measure the privacy of a hidden representation by the ability of an attacker to predict accurately specific private information from it and characterize the tradeoff between the privacy and the utility of neural representations. Finally, we propose several defense methods based on modified training objectives and show that they improve the privacy of neural representations.

#2 Adversarial Removal of Demographic Attributes from Text Data [PDF] [Copy] [Kimi1]

Authors: Yanai Elazar ; Yoav Goldberg

Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in—and can be recovered from—the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to—and likely condition on—demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features.

#3 DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning [PDF] [Copy] [Kimi1]

Authors: Kashyap Popat ; Subhabrata Mukherjee ; Andrew Yates ; Gerhard Weikum

Misinformation such as fake news is one of the big challenges of our society. Research on automated fact-checking has proposed methods based on supervised learning, but these approaches do not consider external evidence apart from labeled training instances. Recent approaches counter this deficit by considering external sources related to a claim. However, these methods require substantial feature modeling and rich lexicons. This paper overcomes these limitations of prior work with an end-to-end model for evidence-aware credibility assessment of arbitrary textual claims, without any human intervention. It presents a neural network model that judiciously aggregates signals from external evidence articles, the language of these articles and the trustworthiness of their sources. It also derives informative features for generating user-comprehensible explanations that makes the neural network predictions transparent to the end-user. Experiments with four datasets and ablation studies show the strength of our method.

#4 It’s going to be okay: Measuring Access to Support in Online Communities [PDF] [Copy] [Kimi1]

Authors: Zijian Wang ; David Jurgens

People use online platforms to seek out support for their informational and emotional needs. Here, we ask what effect does revealing one’s gender have on receiving support. To answer this, we create (i) a new dataset and method for identifying supportive replies and (ii) new methods for inferring gender from text and name. We apply these methods to create a new massive corpus of 102M online interactions with gender-labeled users, each rated by degree of supportiveness. Our analysis shows wide-spread and consistent disparity in support: identifying as a woman is associated with higher rates of support - but also higher rates of disparagement.

#5 Detecting Gang-Involved Escalation on Social Media Using Context [PDF] [Copy] [Kimi1]

Authors: Serina Chang ; Ruiqi Zhong ; Ethan Adams ; Fei-Tzin Lee ; Siddharth Varia ; Desmond Patton ; William Frey ; Chris Kedzie ; Kathy McKeown

Gang-involved youth in cities such as Chicago have increasingly turned to social media to post about their experiences and intents online. In some situations, when they experience the loss of a loved one, their online expression of emotion may evolve into aggression towards rival gangs and ultimately into real-world violence. In this paper, we present a novel system for detecting Aggression and Loss in social media. Our system features the use of domain-specific resources automatically derived from a large unlabeled corpus, and contextual representations of the emotional and semantic content of the user’s recent tweets as well as their interactions with other users. Incorporating context in our Convolutional Neural Network (CNN) leads to a significant improvement.

#6 Reasoning about Actions and State Changes by Injecting Commonsense Knowledge [PDF] [Copy] [Kimi1]

Authors: Niket Tandon ; Bhavana Dalvi ; Joel Grus ; Wen-tau Yih ; Antoine Bosselut ; Peter Clark

Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.

#7 Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation [PDF] [Copy] [Kimi]

Authors: Adam Poliak ; Aparajita Haldar ; Rachel Rudinger ; J. Edward Hu ; Ellie Pavlick ; Aaron Steven White ; Benjamin Van Durme

We present a large-scale collection of diverse natural language inference (NLI) datasets that help provide insight into how well a sentence representation captures distinct types of reasoning. The collection results from recasting 13 existing datasets from 7 semantic phenomena into a common NLI structure, resulting in over half a million labeled context-hypothesis pairs in total. We refer to our collection as the DNC: Diverse Natural Language Inference Collection. The DNC is available online at https://www.decomp.net, and will grow over time as additional resources are recast and added from novel sources.

#8 Textual Analogy Parsing: What’s Shared and What’s Compared among Analogous Facts [PDF] [Copy] [Kimi1]

Authors: Matthew Lamm ; Arun Chaganty ; Christopher D. Manning ; Dan Jurafsky ; Percy Liang

To understand a sentence like “whereas only 10% of White Americans live at or below the poverty line, 28% of African Americans do” it is important not only to identify individual facts, e.g., poverty rates of distinct demographic groups, but also the higher-order relations between them, e.g., the disparity between them. In this paper, we propose the task of Textual Analogy Parsing (TAP) to model this higher-order meaning. Given a sentence such as the one above, TAP outputs a frame-style meaning representation which explicitly specifies what is shared (e.g., poverty rates) and what is compared (e.g., White Americans vs. African Americans, 10% vs. 28%) between its component facts. Such a meaning representation can enable new applications that rely on discourse understanding such as automated chart generation from quantitative text. We present a new dataset for TAP, baselines, and a model that successfully uses an ILP to enforce the structural constraints of the problem.

#9 SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference [PDF] [Copy] [Kimi1]

Authors: Rowan Zellers ; Yonatan Bisk ; Roy Schwartz ; Yejin Choi

Given a partial description like “she opened the hood of the car,” humans can reason about the situation and anticipate what might come next (”then, she examined the engine”). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.

#10 TwoWingOS: A Two-Wing Optimization Strategy for Evidential Claim Verification [PDF] [Copy] [Kimi1]

Authors: Wenpeng Yin ; Dan Roth

Determining whether a given claim is supported by evidence is a fundamental NLP problem that is best modeled as Textual Entailment. However, given a large collection of text, finding evidence that could support or refute a given claim is a challenge in itself, amplified by the fact that different evidence might be needed to support or refute a claim. Nevertheless, most prior work decouples evidence finding from determining the truth value of the claim given the evidence. We propose to consider these two aspects jointly. We develop TwoWingOS (two-wing optimization strategy), a system that, while identifying appropriate evidence for a claim, also determines whether or not the claim is supported by the evidence. Given the claim, TwoWingOS attempts to identify a subset of the evidence candidates; given the predicted evidence, it then attempts to determine the truth value of the corresponding claim entailment problem. We treat this problem as coupled optimization problems, training a joint model for it. TwoWingOS offers two advantages: (i) Unlike pipeline systems it facilitates flexible-size evidence set, and (ii) Joint training improves both the claim entailment and the evidence identification. Experiments on a benchmark dataset show state-of-the-art performance.

#11 Associative Multichannel Autoencoder for Multimodal Word Representation [PDF] [Copy] [Kimi1]

Authors: Shaonan Wang ; Jiajun Zhang ; Chengqing Zong

In this paper we address the problem of learning multimodal word representations by integrating textual, visual and auditory inputs. Inspired by the re-constructive and associative nature of human memory, we propose a novel associative multichannel autoencoder (AMA). Our model first learns the associations between textual and perceptual modalities, so as to predict the missing perceptual information of concepts. Then the textual and predicted perceptual representations are fused through reconstructing their original and associated embeddings. Using a gating mechanism our model assigns different weights to each modality according to the different concepts. Results on six benchmark concept similarity tests show that the proposed method significantly outperforms strong unimodal baselines and state-of-the-art multimodal models.

#12 Game-Based Video-Context Dialogue [PDF1] [Copy] [Kimi1]

Authors: Ramakanth Pasunuru ; Mohit Bansal

Current dialogue systems focus more on textual and speech context knowledge and are usually based on two speakers. Some recent work has investigated static image-based dialogue. However, several real-world human interactions also involve dynamic visual context (similar to videos) as well as dialogue exchanges among multiple speakers. To move closer towards such multimodal conversational skills and visually-situated applications, we introduce a new video-context, many-speaker dialogue dataset based on live-broadcast soccer game videos and chats from Twitch.tv. This challenging testbed allows us to develop visually-grounded dialogue models that should generate relevant temporal and spatial event language from the live video, while also being relevant to the chat history. For strong baselines, we also present several discriminative and generative models, e.g., based on tridirectional attention flow (TriDAF). We evaluate these models via retrieval ranking-recall, automatic phrase-matching metrics, as well as human evaluation studies. We also present dataset analyses, model ablations, and visualizations to understand the contribution of different modalities and model components.

#13 simNet: Stepwise Image-Topic Merging Network for Generating Detailed and Comprehensive Image Captions [PDF] [Copy] [Kimi1]

Authors: Fenglin Liu ; Xuancheng Ren ; Yuanxin Liu ; Houfeng Wang ; Xu Sun

The encode-decoder framework has shown recent success in image captioning. Visual attention, which is good at detailedness, and semantic attention, which is good at comprehensiveness, have been separately proposed to ground the caption on the image. In this paper, we propose the Stepwise Image-Topic Merging Network (simNet) that makes use of the two kinds of attention at the same time. At each time step when generating the caption, the decoder adaptively merges the attentive information in the extracted topics and the image according to the generated context, so that the visual information and the semantic information can be effectively combined. The proposed approach is evaluated on two benchmark datasets and reaches the state-of-the-art performances.

#14 Multimodal Language Analysis with Recurrent Multistage Fusion [PDF] [Copy] [Kimi]

Authors: Paul Pu Liang ; Ziyin Liu ; AmirAli Bagher Zadeh ; Louis-Philippe Morency

Computational modeling of human multimodal language is an emerging research area in natural language processing spanning the language, visual and acoustic modalities. Comprehending multimodal language requires modeling not only the interactions within each modality (intra-modal interactions) but more importantly the interactions between modalities (cross-modal interactions). In this paper, we propose the Recurrent Multistage Fusion Network (RMFN) which decomposes the fusion problem into multiple stages, each of them focused on a subset of multimodal signals for specialized, effective fusion. Cross-modal interactions are modeled using this multistage fusion approach which builds upon intermediate representations of previous stages. Temporal and intra-modal interactions are modeled by integrating our proposed fusion approach with a system of recurrent neural networks. The RMFN displays state-of-the-art performance in modeling human multimodal language across three public datasets relating to multimodal sentiment analysis, emotion recognition, and speaker traits recognition. We provide visualizations to show that each stage of fusion focuses on a different subset of multimodal signals, learning increasingly discriminative multimodal representations.

#15 Temporally Grounding Natural Sentence in Video [PDF] [Copy] [Kimi1]

Authors: Jingyuan Chen ; Xinpeng Chen ; Lin Ma ; Zequn Jie ; Tat-Seng Chua

We introduce an effective and efficient method that grounds (i.e., localizes) natural sentences in long, untrimmed video sequences. Specifically, a novel Temporal GroundNet (TGN) is proposed to temporally capture the evolving fine-grained frame-by-word interactions between video and sentence. TGN sequentially scores a set of temporal candidates ended at each frame based on the exploited frame-by-word interactions, and finally grounds the segment corresponding to the sentence. Unlike traditional methods treating the overlapping segments separately in a sliding window fashion, TGN aggregates the historical information and generates the final grounding result in one single pass. We extensively evaluate our proposed TGN on three public datasets with significant improvements over the state-of-the-arts. We further show the consistent effectiveness and efficiency of TGN through an ablation study and a runtime test.

#16 PreCo: A Large-scale Dataset in Preschool Vocabulary for Coreference Resolution [PDF] [Copy] [Kimi1]

Authors: Hong Chen ; Zhenhua Fan ; Hao Lu ; Alan Yuille ; Shu Rong

We introduce PreCo, a large-scale English dataset for coreference resolution. The dataset is designed to embody the core challenges in coreference, such as entity representation, by alleviating the challenge of low overlap between training and test sets and enabling separated analysis of mention detection and mention clustering. To strengthen the training-test overlap, we collect a large corpus of 38K documents and 12.5M words which are mostly from the vocabulary of English-speaking preschoolers. Experiments show that with higher training-test overlap, error analysis on PreCo is more efficient than the one on OntoNotes, a popular existing dataset. Furthermore, we annotate singleton mentions making it possible for the first time to quantify the influence that a mention detector makes on coreference resolution performance. The dataset is freely available at https://preschool-lab.github.io/PreCo/.

#17 Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism [PDF] [Copy] [Kimi1]

Authors: Pengfei Cao ; Yubo Chen ; Kang Liu ; Jun Zhao ; Shengping Liu

Named entity recognition (NER) is an important task in natural language processing area, which needs to determine entities boundaries and classify them into pre-defined categories. For Chinese NER task, there is only a very small amount of annotated data available. Chinese NER task and Chinese word segmentation (CWS) task have many similar word boundaries. There are also specificities in each task. However, existing methods for Chinese NER either do not exploit word boundary information from CWS or cannot filter the specific information of CWS. In this paper, we propose a novel adversarial transfer learning framework to make full use of task-shared boundaries information and prevent the task-specific features of CWS. Besides, since arbitrary character can provide important cues when predicting entity type, we exploit self-attention to explicitly capture long range dependencies between two tokens. Experimental results on two different widely used datasets show that our proposed model significantly and consistently outperforms other state-of-the-art methods.

#18 Using Linguistic Features to Improve the Generalization Capability of Neural Coreference Resolvers [PDF] [Copy] [Kimi1]

Authors: Nafise Sadat Moosavi ; Michael Strube

Coreference resolution is an intermediate step for text understanding. It is used in tasks and domains for which we do not necessarily have coreference annotated corpora. Therefore, generalization is of special importance for coreference resolution. However, while recent coreference resolvers have notable improvements on the CoNLL dataset, they struggle to generalize properly to new domains or datasets. In this paper, we investigate the role of linguistic features in building more generalizable coreference resolvers. We show that generalization improves only slightly by merely using a set of additional linguistic features. However, employing features and subsets of their values that are informative for coreference resolution, considerably improves generalization. Thanks to better generalization, our system achieves state-of-the-art results in out-of-domain evaluations, e.g., on WikiCoref, our system, which is trained on CoNLL, achieves on-par performance with a system designed for this dataset.

#19 Neural Segmental Hypergraphs for Overlapping Mention Recognition [PDF] [Copy] [Kimi1]

Authors: Bailin Wang ; Wei Lu

In this work, we propose a novel segmental hypergraph representation to model overlapping entity mentions that are prevalent in many practical datasets. We show that our model built on top of such a new representation is able to capture features and interactions that cannot be captured by previous models while maintaining a low time complexity for inference. We also present a theoretical analysis to formally assess how our representation is better than alternative representations reported in the literature in terms of representational power. Coupled with neural networks for feature learning, our model achieves the state-of-the-art performance in three benchmark datasets annotated with overlapping mentions.

#20 Variational Sequential Labelers for Semi-Supervised Learning [PDF] [Copy] [Kimi1]

Authors: Mingda Chen ; Qingming Tang ; Karen Livescu ; Kevin Gimpel

We introduce a family of multitask variational methods for semi-supervised sequence labeling. Our model family consists of a latent-variable generative model and a discriminative labeler. The generative models use latent variables to define the conditional probability of a word given its context, drawing inspiration from word prediction objectives commonly used in learning word embeddings. The labeler helps inject discriminative information into the latent space. We explore several latent variable configurations, including ones with hierarchical structure, which enables the model to account for both label-specific and word-specific information. Our models consistently outperform standard sequential baselines on 8 sequence labeling datasets, and improve further with unlabeled data.

#21 Joint Representation Learning of Cross-lingual Words and Entities via Attentive Distant Supervision [PDF] [Copy] [Kimi1]

Authors: Yixin Cao ; Lei Hou ; Juanzi Li ; Zhiyuan Liu ; Chengjiang Li ; Xu Chen ; Tiansi Dong

Jointly representation learning of words and entities benefits many NLP tasks, but has not been well explored in cross-lingual settings. In this paper, we propose a novel method for joint representation learning of cross-lingual words and entities. It captures mutually complementary knowledge, and enables cross-lingual inferences among knowledge bases and texts. Our method does not require parallel corpus, and automatically generates comparable data via distant supervision using multi-lingual knowledge bases. We utilize two types of regularizers to align cross-lingual words and entities, and design knowledge attention and cross-lingual attention to further reduce noises. We conducted a series of experiments on three tasks: word translation, entity relatedness, and cross-lingual entity linking. The results, both qualitative and quantitative, demonstrate the significance of our method.

#22 Deep Pivot-Based Modeling for Cross-language Cross-domain Transfer with Minimal Guidance [PDF] [Copy] [Kimi1]

Authors: Yftah Ziser ; Roi Reichart

While cross-domain and cross-language transfer have long been prominent topics in NLP research, their combination has hardly been explored. In this work we consider this problem, and propose a framework that builds on pivot-based learning, structure-aware Deep Neural Networks (particularly LSTMs and CNNs) and bilingual word embeddings, with the goal of training a model on labeled data from one (language, domain) pair so that it can be effectively applied to another (language, domain) pair. We consider two setups, differing with respect to the unlabeled data available for model training. In the full setup the model has access to unlabeled data from both pairs, while in the lazy setup, which is more realistic for truly resource-poor languages, unlabeled data is available for both domains but only for the source language. We design our model for the lazy setup so that for a given target domain, it can train once on the source language and then be applied to any target language without re-training. In experiments with nine English-German and nine English-French domain pairs our best model substantially outperforms previous models even when it is trained in the lazy setup and previous models are trained in the full setup.

#23 Multi-lingual Common Semantic Space Construction via Cluster-consistent Word Embedding [PDF] [Copy] [Kimi1]

Authors: Lifu Huang ; Kyunghyun Cho ; Boliang Zhang ; Heng Ji ; Kevin Knight

We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can be shared across multiple languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features which are extracted from manually crafted lexical resources than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 14.6% absolute F-score gain over the state of the art on cross-lingual direct transfer. Our approach is also shown to be robust even when the size of bilingual dictionary is small.

#24 Unsupervised Multilingual Word Embeddings [PDF] [Copy] [Kimi1]

Authors: Xilun Chen ; Claire Cardie

Multilingual Word Embeddings (MWEs) represent words from multiple languages in a single distributional vector space. Unsupervised MWE (UMWE) methods acquire multilingual embeddings without cross-lingual supervision, which is a significant advantage over traditional supervised approaches and opens many new possibilities for low-resource languages. Prior art for learning UMWEs, however, merely relies on a number of independently trained Unsupervised Bilingual Word Embeddings (UBWEs) to obtain multilingual embeddings. These methods fail to leverage the interdependencies that exist among many languages. To address this shortcoming, we propose a fully unsupervised framework for learning MWEs that directly exploits the relations between all language pairs. Our model substantially outperforms previous approaches in the experiments on multilingual word translation and cross-lingual word similarity. In addition, our model even beats supervised approaches trained with cross-lingual resources.

#25 CLUSE: Cross-Lingual Unsupervised Sense Embeddings [PDF] [Copy] [Kimi1]

Authors: Ta-Chung Chi ; Yun-Nung Chen

This paper proposes a modularized sense induction and representation learning model that jointly learns bilingual sense embeddings that align well in the vector space, where the cross-lingual signal in the English-Chinese parallel corpus is exploited to capture the collocation and distributed characteristics in the language pair. The model is evaluated on the Stanford Contextual Word Similarity (SCWS) dataset to ensure the quality of monolingual sense embeddings. In addition, we introduce Bilingual Contextual Word Similarity (BCWS), a large and high-quality dataset for evaluating cross-lingual sense embeddings, which is the first attempt of measuring whether the learned embeddings are indeed aligned well in the vector space. The proposed approach shows the superior quality of sense embeddings evaluated in both monolingual and bilingual spaces.