| Total: 424
Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, which is essential for downstream tasks in many domains, such as tasks in e-commerce scenarios. In this paper, we propose K-PLUG, a knowledge-injected pre-trained language model based on the encoder-decoder transformer that can be transferred to both natural language understanding and generation tasks. Specifically, we propose five knowledge-aware self-supervised pre-training objectives to formulate the learning of domain-specific knowledge, including e-commerce domain-specific knowledge-bases, aspects of product entities, categories of product entities, and unique selling propositions of product entities. We verify our method in a diverse range of e-commerce scenarios that require domain-specific knowledge, including product knowledge base completion, abstractive product summarization, and multi-turn dialogue. K-PLUG significantly outperforms baselines across the board, which demonstrates that the proposed method effectively learns a diverse set of domain-specific knowledge for both language understanding and generation tasks. Our code is available.
Short text nowadays has become a more fashionable form of text data, e.g., Twitter posts, news titles, and product reviews. Extracting semantic topics from short texts plays a significant role in a wide spectrum of NLP applications, and neural topic modeling is now a major tool to achieve it. Motivated by learning more coherent and semantic topics, in this paper we develop a novel neural topic model named Dual Word Graph Topic Model (DWGTM), which extracts topics from simultaneous word co-occurrence and semantic correlation graphs. To be specific, we learn word features from the global word co-occurrence graph, so as to ingest rich word co-occurrence information; we then generate text features with word features, and feed them into an encoder network to get topic proportions per-text; finally, we reconstruct texts and word co-occurrence graph with topical distributions and word features, respectively. Besides, to capture semantics of words, we also apply word features to reconstruct a word semantic correlation graph computed by pre-trained word embeddings. Upon those ideas, we formulate DWGTM in an auto-encoding paradigm and efficiently train it with the spirit of neural variational inference. Empirical results validate that DWGTM can generate more semantically coherent topics than baseline topic models.
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised training stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks. Our code will be publicly available after publication.
Recent work in multilingual natural language processing has shown progress in various tasks such as natural language inference and joint multilingual translation. Despite success in learning across many languages, challenges arise where multilingual training regimes often boost performance on some languages at the expense of others. For multilingual named entity recognition (NER) we propose a simple technique that groups similar languages together by using embeddings from a pre-trained masked language model, and automatically discovering language clusters in this embedding space. Specifically, we fine-tune an XLM-Roberta model on a language identification task, and use embeddings from this model for clustering. We conduct experiments on 15 diverse languages in the WikiAnn dataset and show our technique largely outperforms three baselines: (1) training a multilingual model jointly on all available languages, (2) training one monolingual model per language, and (3) grouping languages by linguistic family. We also conduct analyses showing meaningful multilingual transfer for low-resource languages (Swahili and Yoruba), despite being automatically grouped with other seemingly disparate languages.
Automatic news recommendation has gained much attention from the academic community and industry. Recent studies reveal that the key to this task lies within the effective representation learning of both news and users. Existing works typically encode news title and content separately while neglecting their semantic interaction, which is inadequate for news text comprehension. Besides, previous models encode user browsing history without leveraging the structural correlation of user browsed news to reflect user interests explicitly. In this work, we propose a news recommendation framework consisting of collaborative news encoding (CNE) and structural user encoding (SUE) to enhance news and user representation learning. CNE equipped with bidirectional LSTMs encodes news title and content collaboratively with cross-selection and cross-attention modules to learn semantic-interactive news representations. SUE utilizes graph convolutional networks to extract cluster-structural features of user history, followed by intra-cluster and inter-cluster attention modules to learn hierarchical user interest representations. Experiment results on the MIND dataset validate the effectiveness of our model to improve the performance of news recommendation.
Despite considerable progress, most machine reading comprehension (MRC) tasks still lack sufficient training data to fully exploit powerful deep neural network models with millions of parameters, and it is laborious, expensive, and time-consuming to create large-scale, high-quality MRC data through crowdsourcing. This paper focuses on generating more training data for MRC tasks by leveraging existing question-answering (QA) data. We first collect a large-scale multi-subject multiple-choice QA dataset for Chinese, ExamQA. We next use incomplete, yet relevant snippets returned by a web search engine as the context for each QA instance to convert it into a weakly-labeled MRC instance. To better use the weakly-labeled data to improve a target MRC task, we evaluate and compare several methods and further propose a self-teaching paradigm. Experimental results show that, upon state-of-the-art MRC baselines, we can obtain +5.1% in accuracy on a multiple-choice Chinese MRC dataset, Cˆ3, and +3.8% in exact match on an extractive Chinese MRC dataset, CMRC 2018, demonstrating the usefulness of the generated QA-based weakly-labeled data for different types of MRC tasks as well as the effectiveness of self-teaching. ExamQA will be available at https://dataset.org/examqa/.
Understanding the semantic meaning of content on the web through the lens of entities and concepts has many practical advantages. However, when building large-scale entity extraction systems, practitioners are facing unique challenges involving finding the best ways to leverage the scale and variety of data available on internet platforms. We present learnings from our efforts in building an entity extraction system for multiple document types at large scale using multi-modal Transformers. We empirically demonstrate the effectiveness of multi-lingual, multi-task and cross-document type learning. We also discuss the label collection schemes that help to minimize the amount of noise in the collected data.
Visual and textual modalities contribute complementary information about events described in multimedia documents. Videos contain rich dynamics and detailed unfoldings of events, while text describes more high-level and abstract concepts. However, existing event extraction methods either do not handle video or solely target video while ignoring other modalities. In contrast, we propose the first approach to jointly extract events from both video and text articles. We introduce the new task of Video MultiMedia Event Extraction and propose two novel components to build the first system towards this task. First, we propose the first self-supervised cross-modal event coreference model that can determine coreference between video events and text events without any manually annotated pairs. Second, we introduce the first cross-modal transformer architecture, which extracts structured event information from both videos and text documents. We also construct and will publicly release a new benchmark of video-article pairs, consisting of 860 video-article pairs with extensive annotations for evaluating methods on this task. Our experimental results demonstrate the effectiveness of our proposed method on our new benchmark dataset. We achieve 6.0% and 5.8% absolute F-score gain on multimodal event coreference resolution and multimedia event extraction.
Temporal language grounding (TLG) aims to localize a video segment in an untrimmed video based on a natural language description. To alleviate the expensive cost of manual annotations for temporal boundary labels,we are dedicated to the weakly supervised setting, where only video-level descriptions are provided for training. Most of the existing weakly supervised methods generate a candidate segment set and learn cross-modal alignment through a MIL-based framework. However, the temporal structure of the video as well as the complicated semantics in the sentence are lost during the learning. In this work, we propose a novel candidate-free framework: Fine-grained Semantic Alignment Network (FSAN), for weakly supervised TLG. Instead of view the sentence and candidate moments as a whole, FSAN learns token-by-clip cross-modal semantic alignment by an iterative cross-modal interaction module, generates a fine-grained cross-modal semantic alignment map, and performs grounding directly on top of the map. Extensive experiments are conducted on two widely-used benchmarks: ActivityNet-Captions, and DiDeMo, where our FSAN achieves state-of-the-art performance.
Despite significant progress has been achieved in text summarization, factual inconsistency in generated summaries still severely limits its practical applications. Among the key factors to ensure factual consistency, a reliable automatic evaluation metric is the first and the most crucial one. However, existing metrics either neglect the intrinsic cause of the factual inconsistency or rely on auxiliary tasks, leading to an unsatisfied correlation with human judgments or increasing the inconvenience of usage in practice. In light of these challenges, we propose a novel metric to evaluate the factual consistency in text summarization via counterfactual estimation, which formulates the causal relationship among the source document, the generated summary, and the language prior. We remove the effect of language prior, which can cause factual inconsistency, from the total causal effect on the generated summary, and provides a simple yet effective way to evaluate consistency without relying on other auxiliary tasks. We conduct a series of experiments on three public abstractive text summarization datasets, and demonstrate the advantages of the proposed metric in both improving the correlation with human judgments and the convenience of usage. The source code is available at https://github.com/xieyxclack/factual_coco.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.
Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.
Latent Dirichlet allocation (LDA), a widely used topic model, is often employed as a fundamental tool for text analysis in various applications. However, the training process of the LDA model typically requires massive text corpus data. On one hand, such massive data may expose private information in the training data, thereby incurring significant privacy concerns. On the other hand, the efficiency of the LDA model training may be impacted, since LDA training often needs to handle these massive text corpus data. To address the privacy issues in LDA model training, some recent works have combined LDA training algorithms that are based on collapsed Gibbs sampling (CGS) with differential privacy. Nevertheless, these works usually have a high accumulative privacy budget due to vast iterations in CGS. Moreover, these works always have low efficiency due to handling massive text corpus data. To improve the privacy guarantee and efficiency, we combine a subsampling method with CGS and propose a novel LDA training algorithm with differential privacy, SUB-LDA. We find that subsampling in CGS naturally improves efficiency while amplifying privacy. We propose a novel metric, the efficiency–privacy function, to evaluate improvements of the privacy guarantee and efficiency. Based on a conventional subsampling method, we propose an adaptive subsampling method to improve the model’s utility produced by SUB-LDA when the subsampling ratio is small. We provide a comprehensive analysis of SUB-LDA, and the experiment results validate its efficiency and privacy guarantee improvements.
Writing mammography reports can be error-prone and time-consuming for radiologists. In this paper we propose a method to generate mammography reports given four images, corresponding to the four views used in screening mammography. To the best of our knowledge our work represents the first attempt to generate the mammography report using deep-learning. We propose an encoder-decoder model that includes an EfficientNet-based encoder and a Transformer-based decoder. We demonstrate that the Transformer-based attention mechanism can combine visual and semantic information to localize salient regions on the input mammograms and generate a visually interpretable report. The conducted experiments, including an evaluation by a certified radiologist, show the effectiveness of the proposed method.
It is a well-known approach for fringe groups and organizations to use euphemisms—ordinary-sounding and innocent-looking words with a secret meaning—to conceal what they are discussing. For instance, drug dealers often use “pot” for marijuana and “avocado” for heroin. From a social media content moderation perspective, though recent advances in NLP have enabled the automatic detection of such single-word euphemisms, no existing work is capable of automatically detecting multi-word euphemisms, such as “blue dream” (marijuana) and “black tar” (heroin). Our paper tackles the problem of euphemistic phrase detection without human effort for the first time, as far as we are aware. We first perform phrase mining on a raw text corpus (e.g., social media posts) to extract quality phrases. Then, we utilize word embedding similarities to select a set of euphemistic phrase candidates. Finally, we rank those candidates by a masked language model—SpanBERT. Compared to strong baselines, we report 20-50% higher detection accuracies using our algorithm for detecting euphemistic phrases.
Multi-hop QA requires the machine to answer complex questions through finding multiple clues and reasoning, and provide explanatory evidence to demonstrate the machine’s reasoning process. We propose Relation Extractor-Reader and Comparator (RERC), a three-stage framework based on complex question decomposition. The Relation Extractor decomposes the complex question, and then the Reader answers the sub-questions in turn, and finally the Comparator performs numerical comparison and summarizes all to get the final answer, where the entire process itself constitutes a complete reasoning evidence path. In the 2WikiMultiHopQA dataset, our RERC model has achieved the state-of-the-art performance, with a winning joint F1 score of 53.58 on the leaderboard. All indicators of our RERC are close to human performance, with only 1.95 behind the human level in F1 score of support fact. At the same time, the evidence path provided by our RERC framework has excellent readability and faithfulness.
The span-based model enjoys great popularity in recent works of sequence segmentation. However, each of these methods suffers from its own defects, such as invalid predictions. In this work, we introduce a unified span-based model, lexical unit analysis (LUA), that addresses all these matters. Segmenting a lexical unit sequence involves two steps. Firstly, we embed every span by using the representations from a pretraining language model. Secondly, we define a score for every segmentation candidate and apply dynamic programming (DP) to extract the candidate with the maximum score. We have conducted extensive experiments on 3 tasks, (e.g., syntactic chunking), across 7 datasets. LUA has established new state-of-the-art performances on 6 of them. We have achieved even better results through incorporating label correlations.
Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense retrievers require splitting documents into short passages that usually contain local, partial and sometimes biased context, and highly depend on the splitting process. As a consequence, it may yield inaccurate and misleading hidden representations, thus deteriorating the final retrieval result. In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework which can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage. Specifically, a document-level retriever first identifies relevant documents, among which relevant passages are then retrieved by a passage-level retriever. The ranking of the retrieved passages will be further calibrated by examining the document-level relevance. In addition, hierarchical title structure and two negative sampling strategies (i.e., In-Doc and In-Sec negatives) are investigated. We apply DHR to large-scale open-domain QA datasets. DHR significantly outperforms the original dense passage retriever, and helps an end-to-end QA system outperform the strong baselines on multiple open-domain QA benchmarks.
We investigate ways to compose complex concepts in texts from primitive ones while grounding them in images. We propose Concept and Relation Graph (CRG), which builds on top of constituency analysis and consists of recursively combined concepts with predicate functions. Meanwhile, we propose a concept composition neural network called Composer to leverage the CRG for visually grounded concept learning. Specifically, we learn the grounding of both primitive and all composed concepts by aligning them to images and show that learning to compose leads to more robust grounding results, measured in text-to-image matching accuracy. Notably, our model can model grounded concepts forming at both the finer-grained sentence level and the coarser-grained intermediate level (or word-level). Composer leads to pronounced improvement in matching accuracy when the evaluation data has significant compound divergence from the training data.
Humans are remarkably flexible when understanding new sentences that include combinations of concepts they have never encountered before. Recent work has shown that while deep networks can mimic some human language abilities when presented with novel sentences, systematic variation uncovers the limitations in the language-understanding abilities of networks. We demonstrate that these limitations can be overcome by addressing the generalization challenges in the gSCAN dataset, which explicitly measures how well an agent is able to interpret novel linguistic commands grounded in vision, e.g., novel pairings of adjectives and nouns. The key principle we employ is compositionality: that the compositional structure of networks should reflect the compositional structure of the problem domain they address, while allowing other parameters to be learned end-to-end. We build a general-purpose mechanism that enables agents to generalize their language understanding to compositional domains. Crucially, our network has the same state-of-the-art performance as prior work while generalizing its knowledge when prior work does not. Our network also provides a level of interpretability that enables users to inspect what each part of networks learns. Robust grounded language understanding without dramatic failures and without corner cases is critical to building safe and fair robots; we demonstrate the significant role that compositionality can play in achieving that goal.
The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.
Producing the embedding of a sentence in anunsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on fourpretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have three main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both topand bottom layers is better than only using toplayers. Lastly, an easy whitening-based vector normalization strategy with less than 10 linesof code consistently boosts the performance. The whole project including codes and data is publicly available at https://github.com/Jun-jie-Huang/WhiteningBERT.
In a typical customer service chat scenario, customers contact a support center to ask for help or raise complaints, and human agents try to solve the issues. In most cases, at the end of the conversation, agents are asked to write a short summary emphasizing the problem and the proposed solution, usually for the benefit of other agents that may have to deal with the same customer or issue. The goal of the present article is advancing the automation of this task. We introduce the first large scale, high quality, customer care dialog summarization dataset with close to 6500 human annotated summaries. The data is based on real-world customer support dialogs and includes both extractive and abstractive summaries. We also introduce a new unsupervised, extractive summarization method specific to dialogs.
Sentence splitting involves the segmentation of a sentence into two or more shorter sentences. It is a key component of sentence simplification, has been shown to help human comprehension and is a useful preprocessing step for NLP tasks such as summarisation and relation extraction. While several methods and datasets have been proposed for developing sentence splitting models, little attention has been paid to how sentence splitting interacts with discourse structure. In this work, we focus on cases where the input text contains a discourse connective, which we refer to as discourse-based sentence splitting. We create synthetic and organic datasets for discourse-based splitting and explore different ways of combining these datasets using different model architectures. We show that pipeline models which use discourse structure to mediate sentence splitting outperform end-to-end models in learning the various ways of expressing a discourse relation but generate text that is less grammatical; that large scale synthetic data provides a better basis for learning than smaller scale organic data; and that training on discourse-focused, rather than on general sentence splitting data provides a better basis for discourse splitting.