Ekw6gjs5Y5@OpenReview

Total: 1

#1 PathVQ: Reforming Computational Pathology Foundation Model for Whole Slide Image Analysis via Vector Quantization [PDF1] [Copy] [Kimi1] [REL]

Authors: Honglin Li, Zhongyi Shui, Yunlong Zhang, Chenglu Zhu, Lin Yang

Pathology whole slide image (WSI) analysis is vital for disease diagnosis and understanding. While foundation models (FMs) have driven recent advances, their scalability in pathology remains a key challenge. In particular, vision-language (VL) pathology FMs align visual features with language annotation for downstream tasks, but they rely heavily on large-scale image-text paired data, which is scarce thus limiting generalization. On the other hand, vision-only pathology FMs can leverage abundant unlabeled data via self-supervised learning (SSL). However, current approaches often use the [CLS] token from tile-level ViTs as slide-level input for efficiency (a tile with 224×224 pixels composed of 196 patches with 16×16 pixels). This SSL pretrained [CLS] token lacks alignment with downstream objectives, limiting effectiveness. We find that spatial patch tokens retain a wealth of informative features beneficial for downstream tasks, but utilizing all of them incurs up to 200× higher computation and storage costs compared [CLS] token only (e.g., 196 tokens per ViT$_{224}$). This highlights a fundamental trade-off between efficiency and representational richness to build scalable pathology FMs. To address this, we propose a feature distillation framework via vector-quantization (VQ) that compresses patch tokens into discrete indices and reconstructs them via a decoder, achieving 64× compression (1024 → 16 dimensions) while preserving fidelity. We further introduce a multi-scale VQ (MSVQ) strategy, enhancing both reconstruction and providing SSL supervision for slide-level pretraining. Built upon MSVQ features and supervision signals, we design a progressive convolutional module and a slide-level SSL objective to learn spatially rich representations for downstream WSI tasks. Extensive experiments across multiple datasets demonstrate that our approach achieves state-of-the-art performance, offering a scalable and effective solution for high-performing pathology FMs in WSI analysis.

Subject: NeurIPS.2025 - Poster