GdrBPyUNPL@OpenReview

Total: 1

#1 Non-monotone Submodular Optimization: $p$-Matchoid Constraints and Fully Dynamic Setting [PDF] [Copy] [Kimi] [REL]

Authors: Kiarash Banihashem, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, Morteza Monemizadeh

Submodular maximization subject to a $p$-matchoid constraint has various applications in machine learning, particularly in tasks such as feature selection, video and text summarization, movie recommendation, graph-based learning, and constraint-based optimization. We study this problem in the dynamic setting, where a sequence of insertions and deletions of elements to a $p$-matchoid $\mathcal{M}(\mathcal{V},\mathcal{I})$ occurs over time and the goal is to efficiently maintain an approximate solution. We propose a dynamic algorithm for non-monotone submodular maximization under a $p$-matchoid constraint. For a $p$-matchoid $\mathcal{M}(\mathcal{V},\mathcal{I})$ of rank $k$, defined by a collection of $m$ matroids, our algorithm guarantees a $(2p + 2\sqrt{p(p+1)} + 1 + \epsilon)$-approximate solution at any time $t$ in the update sequence, with an expected amortized query complexity of $O(\epsilon^{-3} pk^4 \log^2(k))$ per update.

Subject: NeurIPS.2025 - Poster