HKfZwLjSwQ@OpenReview

Total: 1

#1 LLM Query Scheduling with Prefix Reuse and Latency Constraints [PDF] [Copy] [Kimi] [REL]

Authors: Gregory Dexter, Shao Tang, Ata Fatahibaarzi, Qingquan Song, Tejas Dharamsi, Aman Gupta

The efficient deployment of large language models (LLMs) in online settings requires optimizing inference performance under stringent latency constraints, particularly the time-to-first-token (TTFT) and time-per-output-token (TPOT). This paper focuses on the query scheduling problem for LLM inference with prefix reuse, a technique that leverages shared prefixes across queries to reduce computational overhead. Our work reveals previously unknown limitations of the existing first-come-first-serve (FCFS) and longest-prefix-match (LPM) scheduling strategies with respect to satisfying latency constraints. We present a formal theoretical framework for LLM query scheduling under RadixAttention, a prefix reuse mechanism that stores and reuses intermediate representations in a radix tree structure. Our analysis establishes the NP-hardness of the scheduling problem with prefix reuse under TTFT constraints and proposes a novel scheduling algorithm, $k$-LPM, which generalizes existing methods by balancing prefix reuse and fairness in query processing. Theoretical guarantees demonstrate that $k$-LPM achieves improved TTFT performance under realistic traffic patterns captured by a data generative model. Empirical evaluations in a realistic serving setting validates our findings, showing significant reductions in P99 TTFT compared to baseline methods.

Subject: NeurIPS.2025 - Poster