HMVQ00vabY@OpenReview

Total: 1

#1 Probabilistic Reasoning with LLMs for Privacy Risk Estimation [PDF] [Copy] [Kimi] [REL]

Authors: Jonathan Zheng, Alan Ritter, Sauvik Das, Wei Xu

Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a new numerical reasoning task under uncertainty for large language models, focusing on estimating the privacy risk of user-generated documents containing privacy-sensitive information. We propose BRANCH, a new LLM methodology that estimates the $k$-privacy value of a text—the size of the population matching the given information. BRANCH factorizes a joint probability distribution of personal information as random variables. The probability of each factor in a population is estimated separately using a Bayesian network and combined to compute the final $k$-value. Our experiments show that this method successfully estimates the $k$-value 73% of the time, a 13% increase compared to o3-mini with chain-of-thought reasoning. We also find that LLM uncertainty is a good indicator for accuracy, as high variance predictions are 37.47% less accurate on average.

Subject: NeurIPS.2025 - Poster