IJCAI.2017

| Total: 781

#1 Proactive and Reactive Coordination of Non-dedicated Agent Teams Operating in Uncertain Environments [PDF] [Copy] [Kimi1] [REL]

Authors: Pritee Agrawal, Pradeep Varakantham

Domains such as disaster rescue, security patrolling etc. often feature dynamic environments where allocations of tasks to agents become ineffective due to unforeseen conditions that may require agents to leave the team. Agents leave the team either due to arrival of high priority tasks (e.g., emergency, accident or violation) or due to some damage to the agent. Existing research in task allocation has only considered fixed number of agents and in some instances arrival of new agents on the team. However, there is little or no literature that considers situations where agents leave the team after task allocation. To that end, we first provide a general model to represent non-dedicated teams. Second, we provide a proactive approach based on sample average approximation to generate a strategy that works well across different feasible scenarios of agents leaving the team. Furthermore, we also provide a 2-stage approach that provides a 2-stage policy that changes allocation based on observed state of the team. Third, we provide a reactive approach that rearranges the allocated tasks to better adapt to leaving agents. Finally, we provide a detailed evaluation of our approaches on existing benchmark problems.


#2 Diverse Weighted Bipartite b-Matching [PDF] [Copy] [Kimi] [REL]

Authors: Faez Ahmed, John P. Dickerson, Mark Fuge

Bipartite matching, where agents on one side of a market are matched to agents or items on the other, is a classical problem in computer science and economics, with widespread application in healthcare, education, advertising, and general resource allocation. A practitioner's goal is typically to maximize a matching market's economic efficiency, possibly subject to some fairness requirements that promote equal access to resources. A natural balancing act exists between fairness and efficiency in matching markets, and has been the subject of much research.In this paper, we study a complementary goal---balancing diversity and efficiency---in a generalization of bipartite matching where agents on one side of the market can be matched to sets of agents on the other. Adapting a classical definition of the diversity of a set, we propose a quadratic programming-based approach to solving a submodular minimization problem that balances diversity and total weight of the solution. We also provide a scalable greedy algorithm with theoretical performance bounds. We then define the price of diversity, a measure of the efficiency loss due to enforcing diversity, and give a worst-case theoretical bound. Finally, we demonstrate the efficacy of our methods on three real-world datasets, and show that the price of diversity is not bad in practice. Our code is publicly accessible for further research.


#3 Pure Nash Equilibria in Online Fair Division [PDF] [Copy] [Kimi] [REL]

Authors: Martin Aleksandrov, Toby Walsh

We consider a fair division setting in which items arrive one by one and are allocated to agents via two existing mechanisms: LIKE and BALANCED LIKE. The LIKE mechanism is strategy-proof whereas the BALANCED LIKE mechanism is not. Whilst LIKE is strategy-proof, we show that it is not group strategy-proof. Indeed, our first main result is that no online mechanism is group strategy-proof. We then focus on pure Nash equilibria of these two mechanisms. Our second main result is that computing a pure Nash equilibrium is tractable for LIKE and intractable for BALANCED LIKE. Our third main result is that there could be multiple such profiles and counting them is also intractable even when we restrict our attention to equilibria with a specific property (e.g. envy-freeness, Pareto efficiency).


#4 Efficient Computation of Extensions for Dynamic Abstract Argumentation Frameworks: An Incremental Approach [PDF] [Copy] [Kimi] [REL]

Authors: Gianvincenzo Alfano, Sergio Greco, Francesco Parisi

Abstract argumentation frameworks (AFs) are a well-known formalism for modelling and deciding many argumentation problems. Computational issues and evaluation algorithms have been deeply investigated for static AFs, whose structure does not change over the time. However, AFs are often dynamic as a consequence of the fact that argumentation is inherently dynamic. In this paper, we tackle the problem of incrementally computing extensions for dynamic AFs: given an initial extension and an update (or a set of updates), we devise a technique for computing an extension of the updated AF under four well-known semantics (i.e., complete, preferred, stable, and grounded). The idea is to identify a reduced (updated) AF sufficient to compute an extension of the whole AF and use state-of-the-art algorithms to recompute an extension of the reduced AF only. The experiments reveal that, for all semantics considered and using different solvers, the incremental technique is on average two orders of magnitude faster than computing the semantics from scratch.


#5 Acceptability Semantics for Weighted Argumentation Frameworks [PDF] [Copy] [Kimi] [REL]

Authors: Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, Srdjan Vesic

The paper studies semantics that evaluate arguments in argumentation graphs, where each argument has a basic strength, and may be attacked by other arguments. It starts by defining a set of principles, each of which is a property that a semantics could satisfy. It provides the first formal analysis and comparison of existing semantics. Finally, it defines three novel semantics that satisfy more principles than existing ones.


#6 Measuring the Intensity of Attacks in Argumentation Graphs with Shapley Value [PDF] [Copy] [Kimi] [REL]

Authors: Leila Amgoud, Jonathan Ben-Naim, Srdjan Vesic

In an argumentation setting, a semantics evaluates the overall acceptability of arguments. Consequently, it reveals the global loss incurred by each argument due to attacks. However, it does not say anything on the contribution of each attack to that loss. This paper introduces the novel concept of contribution measure which evaluates those contributions. It starts by defining a set of axioms that a reasonable measure would satisfy, then shows that the Shapley value is the unique measure that satisfies them. Finally, it investigates the properties of the latter under existing semantics.


#7 An Abstraction-Refinement Methodology for Reasoning about Network Games [PDF] [Copy] [Kimi] [REL]

Authors: Guy Avni, Shibashis Guha, Orna Kupferman

Network games (NGs) are played on directed graphs and are extensively used in network design and analysis. Search problems for NGs include finding special strategy profiles such as a Nash equilibrium and a globally optimal solution. The networks modeled by NGs may be huge. In formal verification, abstraction has proven to be an extremely effective technique for reasoning about systems with big and even infinite state spaces. We describe an abstraction-refinement methodology for reasoning about NGs. Our methodology is based on an abstraction function that maps the state space of an NG to a much smaller state space. We search for a global optimum and a Nash equilibrium by reasoning on an under- and an over-approximation defined on top of this smaller state space. When the approximations are too coarse to find such profiles, we refine the abstraction function. Our experimental results demonstrate the efficiency of the methodology.


#8 Pareto Optimal Allocation under Uncertain Preferences [PDF] [Copy] [Kimi] [REL]

Authors: Haris Aziz, Ronald de Haan, Baharak Rastegari

The assignment problem is one of the most well-studied settings in social choice, matching, and discrete allocation. We consider this problem with the additional feature that agents' preferences involve uncertainty. The setting with uncertainty leads to a number of interesting questions including the following ones. How to compute an assignment with the highest probability of being Pareto optimal? What is the complexity of computing the probability that a given assignment is Pareto optimal? Does there exist an assignment that is Pareto optimal with probability one? We consider these problems under two natural uncertainty models: (1) the lottery model in which each agent has an independent probability distribution over linear orders and (2) the joint probability model that involves a joint probability distribution over preference profiles. For both of these models, we present a number of algorithmic and complexity results highlighting the difference and similarities in the complexity of the two models.


#9 The Condorcet Principle for Multiwinner Elections: From Shortlisting to Proportionality [PDF] [Copy] [Kimi] [REL]

Authors: Haris Aziz, Edith Elkind, Piotr Faliszewski, Martin Lackner, Piotr Skowron

We study two notions of stability in multiwinner elections that are based on the Condorcet criterion. The first notion was introduced by Gehrlein and is majoritarian in spirit. The second one, local stability, is introduced in this paper, and focuses on voter representation. The goal of this paper is to explore these two notions, their implications on restricted domains, and the computational complexity of rules that are consistent with them.


#10 Verification of Broadcasting Multi-Agent Systems against an Epistemic Strategy Logic [PDF] [Copy] [Kimi] [REL]

Authors: Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, Sasha Rubin

We study a class of synchronous, perfect-recall multi-agent systemswith imperfect information and broadcasting (i.e., fully observableactions). We define an epistemic extension of strategy logic withincomplete information and the assumption of uniform and coherentstrategies. In this setting, we prove that the model checking problem,and thus rational synthesis, is decidable with non-elementarycomplexity. We exemplify the applicability of the framework on arational secret-sharing scenario.


#11 Parameterised Verification of Data-aware Multi-Agent Systems [PDF] [Copy] [Kimi] [REL]

Authors: Francesco Belardinelli, Panagiotis Kouvaros, Alessio Lomuscio

We introduce parameterised data-aware multi-agent systems, a formalism to reason about the temporal-epistemic properties of arbitrarily large collections of homogeneous agents, each operating on an infinite data domain. We show that their parameterised verification problem is semi-decidable for classes of interest. This is demonstrated by separately addressing the unboundedness of the number of agents and the the data domain. In doing so we reduce the parameterised model checking problem for these systems to that of parameterised verification for interleaved interpreted systems. We illustrate the expressivity of the formal model by modelling English auctions with an unbounded number of bidders on unbouded data and show how the technique here introduced can be used to give formal guarantees on the resulting system behaviour.


#12 Equilibria in Ordinal Games: A Framework based on Possibility Theory. [PDF] [Copy] [Kimi] [REL]

Authors: Nahla Ben Amor, Helene Fargier, Régis Sabbadin

The present paper proposes the first definition of mixed equilibrium for ordinal games. This definition naturally extends possibilistic (single agent) decision theory. This allows us to provide a unifying view of single and multi-agent qualitative decision theory. Our first contribution is to show that ordinal games always admit a possibilistic mixed equilibrium, which can be seen as a qualitative counterpart to mixed (probabilistic) equilibrium.Then, we show that a possibilistic mixed equilibrium can be computed in polynomial time (wrt the size of the game), which contrasts with pure Nash or mixed probabilistic equilibrium computation in cardinal game theory.The definition we propose is thus operational in two ways: (i) it tackles the case when no pure Nash equilibrium exists in an ordinal game; and (ii) it allows an efficient computation of a mixed equilibrium.


#13 Aggressive, Tense or Shy? Identifying Personality Traits from Crowd Videos [PDF] [Copy] [Kimi] [REL]

Authors: Aniket Bera, Tanmay Randhavane, Dinesh Manocha

We present a real-time algorithm to automatically classify the behavior or personality of a pedestrian based on his or her movements in a crowd video. Our classification criterion is based on Personality Trait theory. We present a statistical scheme that dynamically learns the behavior of every pedestrian and computes its motion model. This model is combined with global crowd characteristics to compute the movement patterns and motion dynamics and use them for crowd prediction. Our learning scheme is general and we highlight its performance in identifying the personality of different pedestrians in low and high density crowd videos. We also evaluate the accuracy by comparing the results with a user study.


#14 Computing Bayes-Nash Equilibria in Combinatorial Auctions with Continuous Value and Action Spaces [PDF] [Copy] [Kimi] [REL]

Authors: Vitor Bosshard, Benedikt Bünz, Benjamin Lubin, Sven Seuken

Combinatorial auctions (CAs) are widely used in practice, which is why understanding their incentive properties is an important problem. However, finding Bayes-Nash equilibria (BNEs) of CAs analytically is tedious, and prior algorithmic work has only considered limited solution concepts (e.g. restricted action spaces). In this paper, we present a fast, general algorithm for computing symmetric pure ε-BNEs in CAs with continuous values and actions. In contrast to prior work, we separate the search phase (for finding the BNE) from the verification step (for estimating the ε), and always consider the full (continuous) action space in the best response computation. We evaluate our method in the well-studied LLG domain, against a benchmark of 16 CAs for which analytical BNEs are known. In all cases, our algorithm converges quickly, matching the known results with high precision. Furthermore, for CAs with quasi-linear utility functions and independently distributed valuations, we derive a theoretical bound on ε. Finally, we introduce the new Multi-Minded LLLLGG domain with eight goods and six bidders, and apply our algorithm to finding an equilibrium in this domain. Our algorithm is the first to find an accurate BNE in a CA of this size.


#15 Voting by sequential elimination with few voters [PDF] [Copy] [Kimi] [REL]

Authors: Sylvain Bouveret, Yann Chevaleyre, François Durand, Jérôme Lang

We define a new class of low-communication voting rules, tailored for contexts with few voters and possibly many candidates. These rules are defined by a predefined sequence of voters: at each stage, the designated voter eliminates a candidate, and the last remaining candidate wins. We study both deterministic (non-anonymous) variants, and randomized (and anonymous) versions of these rules. We focus on a subfamily of these rules defined by ``non-interleaved'' sequences. We first focus on the axiomatic properties of our rules. Then we focus on the identification of the non-interleaved sequence that gives the best approximation of the Borda score under the impartial culture. Finally, we apply our rules to randomly generated data. Our conclusion is that, in contexts where there are more candidates than voters, elimination-based rules allow for a very low communication complexity (and especially, avoid asking voters to rank alternatives), and yet can be good approximations of common voting rules, while enjoying a number of good properties.


#16 Fair Division of a Graph [PDF] [Copy] [Kimi] [REL]

Authors: Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, Dominik Peters

We consider fair allocation of indivisible items under an additional constraint: there is an undirected graph describing the relationship between the items, and each agent's share must form a connected subgraph of this graph. This framework captures, e.g., fair allocation of land plots, where the graph describes the accessibility relation among the plots. We focus on agents that have additive utilities for the items, and consider several common fair division solution concepts, such as proportionality, envy-freeness and maximin share guarantee. While finding good allocations according to these solution concepts is computationally hard in general, we design efficient algorithms for special cases wherethe underlying graph has simple structure, and/or the number of agents---or, less restrictively, the number of agent types---is small. In particular, despite non-existence results in the general case, we prove that for acyclic graphs a maximin share allocation always exists and can be found efficiently.


#17 Bounding the Inefficiency of Compromise [PDF] [Copy] [Kimi] [REL]

Authors: Ioannis Caragiannis, Panagiotis Kanellopoulos, Alexandros A. Voudouris

Social networks on the Internet have seen an enormous growth recently and play a crucial role in different aspects of today's life. They have facilitated information dissemination in ways that have been beneficial for their users but it is also a common belief that they are often used strategically in order to spread information that only serves the objectives of particular users. These properties have inspired a revision of classical opinion formation models from sociology using game-theoretic notions and tools. We follow the same modeling approach, focusing on scenarios where the opinion expressed by each user is a compromise between her internal belief and the opinions of a small number of neighbors among her social acquaintances. We formulate simple games that capture this behavior and quantify the inefficiency of equilibria using the well-known notion of the price of anarchy. Our results indicate that compromise comes at a cost that strongly depends on the neighborhood size.


#18 Learning a Ground Truth Ranking Using Noisy Approval Votes [PDF] [Copy] [Kimi] [REL]

Authors: Ioannis Caragiannis, Evi Micha

We consider a voting scenario where agents have opinions that are estimates of an underlying common ground truth ranking of the available alternatives, and each agent is asked to approve a set with her most preferred alternatives. We assume that estimates are implicitly formed using the well-known Mallows model for generating random rankings. We show that k-approval voting --- where all agents are asked to approve the same number k of alternatives and the outcome is obtained by sorting the alternatives in terms of their number of approvals --- has exponential sample complexity for all values of k. This negative result suggests that an exponential (in terms of the number of alternatives m) number of agents is always necessary in order to recover the ground truth ranking with high probability. In contrast, by just asking each agent to approve a random number of alternatives, the sample complexity improves dramatically: it now depends only polynomially on m. Our results may have implications on the effectiveness of crowdsourcing applications that ask workers to provide their input by approving sets of available alternatives.


#19 Plan Explanations as Model Reconciliation: Moving Beyond Explanation as Soliloquy [PDF] [Copy] [Kimi] [REL]

Authors: Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, Subbarao Kambhampati

When AI systems interact with humans in the loop, they are often called on to provide explanations for their plans and behavior. Past work on plan explanations primarily involved the AI system explaining the correctness of its plan and the rationale for its decision in terms of its own model. Such soliloquy is wholly inadequate in most realistic scenarios where the humans have domain and task models that differ significantly from that used by the AI system. We posit that the explanations are best studied in light of these differing models. In particular, we show how explanation can be seen as a "model reconciliation problem" (MRP), where the AI system in effect suggests changes to the human's model, so as to make its plan be optimal with respect to that changed human model. We will study the properties of such explanations, present algorithms for automatically computing them, and evaluate the performance of the algorithms.


#20 Coordinated Versus Decentralized Exploration In Multi-Agent Multi-Armed Bandits [PDF] [Copy] [Kimi] [REL]

Authors: Mithun Chakraborty, Kai Yee Phoebe Chua, Sanmay Das, Brendan Juba

In this paper, we introduce a multi-agent multi-armed bandit-based model for ad hoc teamwork with expensive communication. The goal of the team is to maximize the total reward gained from pulling arms of a bandit over a number of epochs. In each epoch, each agent decides whether to pull an arm, or to broadcast the reward it obtained in the previous epoch to the team and forgo pulling an arm. These decisions must be made only on the basis of the agent’s private information and the public information broadcast prior to that epoch. We first benchmark the achievable utility by analyzing an idealized version of this problem where a central authority has complete knowledge of rewards acquired from all arms in all epochs and uses a multiplicative weights update algorithm for allocating arms to agents. We then introduce an algorithm for the decentralized setting that uses a value-of-information based communication strategy and an exploration-exploitation strategy based on the centralized algorithm, and show experimentally that it converges rapidly to the performance of the centralized method.


#21 Pessimistic Leader-Follower Equilibria with Multiple Followers [PDF] [Copy] [Kimi] [REL]

Authors: Stefano Coniglio, Nicola Gatti, Alberto Marchesi

The problem of computing the strategy to commit to has been widely investigated in the scientific literature for the case where a single-follower is present. In the multi-follower setting though, results are only sporadic. In this paper, we address the multi-follower case for normal-form games, assuming that, after observing the leader’s commitment, the followers play pure strategies and reach a Nash equilibrium. We focus on the pessimistic case where, among many equilibria, one minimizing the leader’s utility is chosen (the opposite case is computationally trivial). We show that the problem is NP-hard even with only two followers, and propose an exact exponential-time algorithm which, for any number of followers, either finds an equilibrium when the game admits a finite one or, if not, an α-approximation of the supremum of the leader’ utility, for any α > 0.


#22 No Pizza for You: Value-based Plan Selection in BDI Agents [PDF] [Copy] [Kimi] [REL]

Authors: Stephen Cranefield, Michael Winikoff, Virginia Dignum, Frank Dignum

Autonomous agents are increasingly required to be able to make moral decisions. In these situations, the agent should be able to reason about the ethical bases of the decision and explain its decision in terms of the moral values involved. This is of special importance when the agent is interacting with a user and should understand the value priorities of the user in order to provide adequate support. This paper presents a model of agent behavior that takes into account user preferences and moral values.


#23 Interaction-based ontology alignment repair with expansion and relaxation [PDF] [Copy] [Kimi] [REL]

Author: Jérôme Euzenat

Agents may use ontology alignments to communicate when they represent knowledge with different ontologies: alignments help reclassifying objects from one ontology to the other. These alignments may not be perfectly correct, yet agents have to proceed. They can take advantage of their experience in order to evolve alignments: upon communication failure, they will adapt the alignments to avoid reproducing the same mistake. Such repair experiments had been performed in the framework of networks of ontologies related by alignments. They revealed that, by playing simple interaction games, agents can effectively repair random networks of ontologies. Here we repeat these experiments and, using new measures, show that previous results were underestimated. We introduce new adaptation operators that improve those previously considered. We also allow agents to go beyond the initial operators in two ways: they can generate new correspondences when they discard incorrect ones, and they can provide less precise answers. The combination of these modalities satisfy the following properties: (1) Agents still converge to a state in which no mistake occurs. (2) They achieve results far closer to the correct alignments than previously found. (3) They reach again 100\% precision and coherent alignments.


#24 Multiwinner Rules on Paths From k-Borda to Chamberlin–Courant [PDF] [Copy] [Kimi] [REL]

Authors: Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, Nimrod Talmon

The classical multiwinner rules are designed for particular purposes. For example, variants of k-Borda are used to find k best competitors in judging contests while the Chamberlin-Courant rule is used to select a diverse set of k products. These rules represent two extremes of the multiwinner world. At times, however, one might need to find an appropriate trade-off between these two extremes. We explore continuous transitions from k-Borda to Chamberlin-Courant and study intermediate rules.


#25 Operation Frames and Clubs in Kidney Exchange [PDF] [Copy] [Kimi] [REL]

Authors: Gabriele Farina, John P. Dickerson, Tuomas Sandholm

A kidney exchange is a centrally-administered barter market where patients swap their willing yet incompatible donors. Modern kidney exchanges use 2-cycles, 3-cycles, and chains initiated by non-directed donors (altruists who are willing to give a kidney to anyone) as the means for swapping. We propose significant generalizations to kidney exchange. We allow more than one donor to donate in exchange for their desired patient receiving a kidney. We also allow for the possibility of a donor willing to donate if any of a number of patients receive kidneys. Furthermore, we combine these notions and generalize them. The generalization is to exchange among organ clubs, where a club is willing to donate organs outside the club if and only if the club receives organs from outside the club according to given specifications. We prove that unlike in the standard model, the uncapped clearing problem is NP-complete. We also present the notion of operation frames that can be used to sequence the operations across batches, and present integer programming formulations for the market clearing problems for these new types of organ exchanges. Experiments show that in the single-donation setting, operation frames improve planning by 34% - 51%. Allowing up to two donors to donate in exchange for one kidney donated to their designated patient yields a further increase in social welfare.