Total: 1
Data assimilation for nonlinear state space models (SSMs) is inherently challenging due to non-Gaussian posteriors. We propose Deep Bayesian Filtering (DBF), a novel approach to data assimilation in nonlinear SSMs. DBF introduces latent variables $h_t$ in addition to physical variables $z_t$, ensuring Gaussian posteriors by (i) constraining state transitions in the latent space to be linear and (ii) learning a Gaussian inverse observation operator $r(h_t|o_t)$. This structured posterior design enables analytical recursive computation, avoiding the accumulation of Monte Carlo sampling errors over time steps. DBF optimizes these operators and other latent SSM parameters by maximizing the evidence lower bound. Experiments demonstrate that DBF outperforms existing methods in scenarios with highly non-Gaussian posteriors.