Total: 1
This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike existing works, the EMC2 introduces a novel scenario-aware MoE architecture optimized for fusing complementary sparse 3D point clouds and dense 2D images to achieve robust multimodal representations for detection. Furthermore, EMC2 integrates an adaptive multimodal data bridge with multi-scale region proposing and scenario-aware routing, dynamically dispatching features to complementary experts based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs.