Total: 1
Self-training is a semi-supervised learning approach for utilizing unlabeled data to create better learners. The efficacy of self-training algorithms depends on their data sampling techniques. The majority of current sampling techniques are based on predetermined policies which may not effectively explore the data space or improve model generalizability. In this work, we tackle the above challenges by introducing a new data sampling technique based on spaced repetition that dynamically samples informative and diverse unlabeled instances with respect to individual learner and instance characteristics. The proposed model is specifically effective in the context of neural models which can suffer from overfitting and high-variance gradients when trained with small amount of labeled data. Our model outperforms current semi-supervised learning approaches developed for neural networks on publicly-available datasets.