NeurIPS.2022

| Total: 2873

#1 Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss [PDF2] [Copy] [Kimi3] [REL]

Authors: Jason Altschuler, Kunal Talwar

A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm's privacy loss remain open---even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant. This result reveals that all previous analyses for this setting have the wrong qualitative behavior. Specifically, while previous privacy analyses increase ad infinitum in the number of iterations, we show that after a small burn-in period, running SGD longer leaks no further privacy. Our analysis departs from previous approaches based on fast mixing, instead using techniques based on optimal transport (namely, Privacy Amplification by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification by Sampling). Our techniques readily extend to other settings.


#2 Asymptotic Behaviors of Projected Stochastic Approximation: A Jump Diffusion Perspective [PDF] [Copy] [Kimi3] [REL]

Authors: Jiadong Liang, Yuze Han, Xiang Li, Zhihua Zhang

In this paper, we consider linearly constrained stochastic approximation problems with federated learning (FL) as a special case. We propose a stochastic approximation algorithm named by LPSA with probabilistic projections to ensure feasibility so that projections are performed with probability $p_n$ at the $n$-th iteration. Considering a specific family of the probability $p_n$ and step size $\eta_n$, we analyze our algorithm from an asymptotic and continuous perspective. Using a novel jump diffusion approximation, we show that the trajectories consisting of properly rescaled last iterates weakly converge to the solution of specific SDEs. By analyzing the SDEs, we identify the asymptotic behaviors of LPSA for different choices of $(p_n, \eta_n)$. We find the algorithm presents an intriguing asymptotic bias-variance trade-off according to the relative magnitude of $p_n$ w.r.t. $\eta_n$. It provides insights on how to choose appropriate $\{(p_n, \eta_n)\}_{n \geq 1}$ to minimize the projection complexity.


#3 A Theory of PAC Learnability under Transformation Invariances [PDF1] [Copy] [Kimi4] [REL]

Authors: Han Shao, Omar Montasser, Avrim Blum

Transformation invariances are present in many real-world problems. For example, image classification is usually invariant to rotation and color transformation: a rotated car in a different color is still identified as a car. Data augmentation, which adds the transformed data into the training set and trains a model on the augmented data, is one commonly used technique to build these invariances into the learning process. However, it is unclear how data augmentation performs theoretically and what the optimal algorithm is in presence of transformation invariances. In this paper, we study PAC learnability under transformation invariances in three settings according to different levels of realizability: (i) A hypothesis fits the augmented data; (ii) A hypothesis fits only the original data and the transformed data lying in the support of the data distribution; (iii) Agnostic case. One interesting observation is that distinguishing between the original data and the transformed data is necessary to achieve optimal accuracy in setting (ii) and (iii), which implies that any algorithm not differentiating between the original and transformed data (including data augmentation) is not optimal. Furthermore, this type of algorithms can even ``harm'' the accuracy. In setting (i), although it is unnecessary to distinguish between the two data sets, data augmentation still does not perform optimally. Due to such a difference, we propose two combinatorial measures characterizing the optimal sample complexity in setting (i) and (ii)(iii) and provide the optimal algorithms.


#4 Efficient Phi-Regret Minimization in Extensive-Form Games via Online Mirror Descent [PDF] [Copy] [Kimi2] [REL]

Authors: Yu Bai, Chi Jin, Song Mei, Ziang Song, Tiancheng Yu

A conceptually appealing approach for learning Extensive-Form Games (EFGs) is to convert them to Normal-Form Games (NFGs). This approach enables us to directly translate state-of-the-art techniques and analyses in NFGs to learning EFGs, but typically suffers from computational intractability due to the exponential blow-up of the game size introduced by the conversion. In this paper, we address this problem in natural and important setups for the \emph{$\Phi$-Hedge} algorithm---A generic algorithm capable of learning a large class of equilibria for NFGs. We show that $\Phi$-Hedge can be directly used to learn Nash Equilibria (zero-sum settings), Normal-Form Coarse Correlated Equilibria (NFCCE), and Extensive-Form Correlated Equilibria (EFCE) in EFGs. We prove that, in those settings, the \emph{$\Phi$-Hedge} algorithms are equivalent to standard Online Mirror Descent (OMD) algorithms for EFGs with suitable dilated regularizers, and run in polynomial time. This new connection further allows us to design and analyze a new class of OMD algorithms based on modifying its log-partition function. In particular, we design an improved algorithm with balancing techniques that achieves a sharp $\widetilde{\mathcal{O}}(\sqrt{XAT})$ EFCE-regret under bandit-feedback in an EFG with $X$ information sets, $A$ actions, and $T$ episodes. To our best knowledge, this is the first such rate and matches the information-theoretic lower bound.


#5 Diffusion Visual Counterfactual Explanations [PDF1] [Copy] [Kimi3] [REL]

Authors: Maximilian Augustin, Valentyn Boreiko, Francesco Croce, Matthias Hein

Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image classifier. They are “small” but “realistic” semantic changes of the image changing the classifier decision. Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts, or are limited to image classification problems with few classes. In this paper, we overcome this by generating Diffusion Visual Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers via a diffusion process. Two modifications to the diffusion process are key for our DVCEs: first, an adaptive parameterization, whose hyperparameters generalize across images and models, together with distance regularization and late start of the diffusion process, allow us to generate images with minimal semantic changes to the original ones but different classification. Second, our cone regularization via an adversarially robust model ensures that the diffusion process does not converge to trivial non-semantic changes, but instead produces realistic images of the target class which achieve high confidence by the classifier.


#6 Rethinking Knowledge Graph Evaluation Under the Open-World Assumption [PDF] [Copy] [Kimi] [REL]

Authors: Haotong Yang, Zhouchen Lin, Muhan Zhang

Most knowledge graphs (KGs) are incomplete, which motivates one important research topic on automatically complementing knowledge graphs. However, evaluation of knowledge graph completion (KGC) models often ignores the incompleteness---facts in the test set are ranked against all unknown triplets which may contain a large number of missing facts not included in the KG yet. Treating all unknown triplets as false is called the closed-world assumption. This closed-world assumption might negatively affect the fairness and consistency of the evaluation metrics. In this paper, we study KGC evaluation under a more realistic setting, namely the open-world assumption, where unknown triplets are considered to include many missing facts not included in the training or test sets. For the currently most used metrics such as mean reciprocal rank (MRR) and Hits@K, we point out that their behavior may be unexpected under the open-world assumption. Specifically, with not many missing facts, their numbers show a logarithmic trend with respect to the true strength of the model, and thus, the metric increase could be insignificant in terms of reflecting the true model improvement. Further, considering the variance, we show that the degradation in the reported numbers may result in incorrect comparisons between different models, where stronger models may have lower metric numbers. We validate the phenomenon both theoretically and experimentally. Finally, we suggest possible causes and solutions for this problem. Our code and data are available at https://github.com/GraphPKU/Open-World-KG .


#7 Training Spiking Neural Networks with Local Tandem Learning [PDF] [Copy] [Kimi2] [REL]

Authors: Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, Haizhou Li

Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient over their predecessors. However, there is a lack of an efficient and generalized training method for deep SNNs, especially for deployment on analog computing substrates. In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL). The LTL rule follows the teacher-student learning approach by mimicking the intermediate feature representations of a pre-trained ANN. By decoupling the learning of network layers and leveraging highly informative supervisor signals, we demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity. Our experimental results have also shown that the SNNs thus trained can achieve comparable accuracies to their teacher ANNs on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. Moreover, the proposed LTL rule is hardware friendly. It can be easily implemented on-chip to perform fast parameter calibration and provide robustness against the notorious device non-ideality issues. It, therefore, opens up a myriad of opportunities for training and deployment of SNN on ultra-low-power mixed-signal neuromorphic computing chips.


#8 Addressing Resource Scarcity across Sign Languages with Multilingual Pretraining and Unified-Vocabulary Datasets [PDF] [Copy] [Kimi] [REL]

Authors: Gokul NC, Manideep Ladi, Sumit Negi, Prem Selvaraj, Pratyush Kumar, Mitesh Khapra

There are over 300 sign languages in the world, many of which have very limited or no labelled sign-to-text datasets. To address low-resource data scenarios, self-supervised pretraining and multilingual finetuning have been shown to be effective in natural language and speech processing. In this work, we apply these ideas to sign language recognition.We make three contributions.- First, we release SignCorpus, a large pretraining dataset on sign languages comprising about 4.6K hours of signing data across 10 sign languages. SignCorpus is curated from sign language videos on the internet, filtered for data quality, and converted into sequences of pose keypoints thereby removing all personal identifiable information (PII).- Second, we release Sign2Vec, a graph-based model with 5.2M parameters that is pretrained on SignCorpus. We envisage Sign2Vec as a multilingual large-scale pretrained model which can be fine-tuned for various sign recognition tasks across languages.- Third, we create MultiSign-ISLR -- a multilingual and label-aligned dataset of sequences of pose keypoints from 11 labelled datasets across 7 sign languages, and MultiSign-FS -- a new finger-spelling training and test set across 7 languages. On these datasets, we fine-tune Sign2Vec to create multilingual isolated sign recognition models. With experiments on multiple benchmarks, we show that pretraining and multilingual transfer are effective giving significant gains over state-of-the-art results.All datasets, models, and code has been made open-source via the OpenHands toolkit.


#9 New Definitions and Evaluations for Saliency Methods: Staying Intrinsic, Complete and Sound [PDF] [Copy] [Kimi1] [REL]

Authors: Arushi Gupta, Nikunj Saunshi, Dingli Yu, Kaifeng Lyu, Sanjeev Arora

Saliency methods compute heat maps that highlight portions of an input that were most important for the label assigned to it by a deep net. Evaluations of saliency methods convert this heat map into a new masked input by retaining the $k$ highest-ranked pixels of the original input and replacing the rest with "uninformative" pixels, and checking if the net's output is mostly unchanged. This is usually seen as an explanation of the output, but the current paper highlights reasons why this inference of causality may be suspect. Inspired by logic concepts of completeness & soundness, it observes that the above type of evaluation focuses on completeness of the explanation, but ignores soundness. New evaluation metrics are introduced to capture both notions, while staying in an intrinsic framework---i.e., using the dataset and the net, but no separately trained nets, human evaluations, etc. A simple saliency method is described that matches or outperforms prior methods in the evaluations. Experiments also suggest new intrinsic justifications, based on soundness, for popular heuristic tricks such as TV regularization and upsampling.


#10 Multi-Game Decision Transformers [PDF] [Copy] [Kimi1] [REL]

Authors: Kuang-Huei Lee, Ofir Nachum, Mengjiao (Sherry) Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, Igor Mordatch

A longstanding goal of the field of AI is a method for learning a highly capable, generalist agent from diverse experience. In the subfields of vision and language, this was largely achieved by scaling up transformer-based models and training them on large, diverse datasets. Motivated by this progress, we investigate whether the same strategy can be used to produce generalist reinforcement learning agents. Specifically, we show that a single transformer-based model – with a single set of weights – trained purely offline can play a suite of up to 46 Atari games simultaneously at close-to-human performance. When trained and evaluated appropriately, we find that the same trends observed in language and vision hold, including scaling of performance with model size and rapid adaptation to new games via fine-tuning. We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning, and find that our Multi-Game Decision Transformer models offer the best scalability and performance. We release the pre-trained models and code to encourage further research in this direction.


#11 Towards Consistency in Adversarial Classification [PDF] [Copy] [Kimi2] [REL]

Authors: Laurent Meunier, Raphael Ettedgui, Rafael Pinot, Yann Chevaleyre, Jamal Atif

In this paper, we study the problem of consistency in the context of adversarial examples. Specifically, we tackle the following question: can surrogate losses still be used as a proxy for minimizing the $0/1$ loss in the presence of an adversary that alters the inputs at test-time? Different from the standard classification task, this question cannot be reduced to a point-wise minimization problem, and calibration needs not to be sufficient to ensure consistency. In this paper, we expose some pathological behaviors specific to the adversarial problem, and show that no convex surrogate loss can be consistent or calibrated in this context. It is therefore necessary to design another class of surrogate functions that can be used to solve the adversarial consistency issue. As a first step towards designing such a class, we identify sufficient and necessary conditions for a surrogate loss to be calibrated in both the adversarial and standard settings. Finally, we give some directions for building a class of losses that could be consistent in the adversarial framework.


#12 Exploring Example Influence in Continual Learning [PDF] [Copy] [Kimi2] [REL]

Authors: Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, Liang Wan

Continual Learning (CL) sequentially learns new tasks like human beings, with the goal to achieve better Stability (S, remembering past tasks) and Plasticity (P, adapting to new tasks). Due to the fact that past training data is not available, it is valuable to explore the influence difference on S and P among training examples, which may improve the learning pattern towards better SP. Inspired by Influence Function (IF), we first study example influence via adding perturbation to example weight and computing the influence derivation. To avoid the storage and calculation burden of Hessian inverse in neural networks, we propose a simple yet effective MetaSP algorithm to simulate the two key steps in the computation of IF and obtain the S- and P-aware example influence. Moreover, we propose to fuse two kinds of example influence by solving a dual-objective optimization problem, and obtain a fused influence towards SP Pareto optimality. The fused influence can be used to control the update of model and optimize the storage of rehearsal. Empirical results show that our algorithm significantly outperforms state-of-the-art methods on both task- and class-incremental benchmark CL datasets.


#13 List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [PDF] [Copy] [Kimi2] [REL]

Authors: Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas

We study the problem of list-decodable sparse mean estimation. Specifically, for a parameter $\alpha \in (0, 1/2)$, we are given $m$ points in $\mathbb{R}^n$, $\lfloor \alpha m \rfloor$ of which are i.i.d. samples from a distribution $D$ with unknown $k$-sparse mean $\mu$. No assumptions are made on the remaining points, which form the majority of the dataset. The goal is to return a small list of candidates containing a vector $\hat \mu$ such that $\|\hat \mu - \mu\|_2$ is small. Prior work had studied the problem of list-decodable mean estimation in the dense setting. In this work, we develop a novel, conceptually simpler technique for list-decodable mean estimation. As the main application of our approach, we provide the first sample and computationally efficient algorithm for list-decodable sparse mean estimation. In particular, for distributions with ``certifiably bounded'' $t$-th moments in $k$-sparse directions and sufficiently light tails, our algorithm achieves error of $(1/\alpha)^{O(1/t)}$ with sample complexity $m = (k\log(n))^{O(t)}/\alpha$ and running time $\mathrm{poly}(mn^t)$. For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee $\Theta (\sqrt{\log(1/\alpha)})$ with quasi-polynomial complexity. We complement our upper bounds with nearly-matching statistical query and low-degree polynomial testing lower bounds.


#14 Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP [PDF] [Copy] [Kimi3] [REL]

Authors: Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt

Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes. In this work, we introduce a testbed of six publicly available data sources---YFCC, LAION, Conceptual Captions, WIT, RedCaps, Shutterstock---to investigate how pre-training distributions induce robustness in CLIP. We find that the performance of the pre-training data varies substantially across distribution shifts, with no single data source dominating. Moreover, we systematically study the interactions between these data sources and find that mixing multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source. We complement our empirical findings with theoretical insights from a simple setting, where combining the training data also results in diluted robustness. In addition, our theoretical model provides a candidate explanation for the success of the CLIP-based data filtering technique recently employed in the LAION dataset. Overall our results demonstrate that simply gathering a large amount of data from the web is not the most effective way to build a pre-training dataset for robust generalization, necessitating further study into dataset design. Code is available at https://github.com/mlfoundations/clip_quality_not_quantity.


#15 SCAMPS: Synthetics for Camera Measurement of Physiological Signals [PDF] [Copy] [Kimi] [REL]

Authors: Daniel McDuff, Miah Wander, Xin Liu, Brian Hill, Javier Hernandez, Jonathan Lester, Tadas Baltrusaitis

The use of cameras and computational algorithms for noninvasive, low-cost and scalable measurement of physiological (e.g., cardiac and pulmonary) vital signs is very attractive. However, diverse data representing a range of environments, body motions, illumination conditions and physiological states is laborious, time consuming and expensive to obtain. Synthetic data have proven a valuable tool in several areas of machine learning, yet are not widely available for camera measurement of physiological states. Synthetic data offer "perfect" labels (e.g., without noise and with precise synchronization), labels that may not be possible to obtain otherwise (e.g., precise pixel level segmentation maps) and provide a high degree of control over variation and diversity in the dataset. We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities. The RGB frames are provided alongside segmentation maps and precise descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time. Finally, we present baseline results training on these synthetic data and testing on real-world datasets to illustrate generalizability.


#16 AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation [PDF] [Copy] [Kimi] [REL]

Authors: Yuanfeng Ji, Haotian Bai, Chongjian GE, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan Zhanng, Wanling Ma, Xiang Wan, Ping Luo

Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org.


#17 Public Wisdom Matters! Discourse-Aware Hyperbolic Fourier Co-Attention for Social Text Classification [PDF] [Copy] [Kimi2] [REL]

Authors: Karish Grover, S M Phaneendra Angara, Md Shad Akhtar, Tanmoy Chakraborty

Social media has become the fulcrum of all forms of communication. Classifying social texts such as fake news, rumour, sarcasm, etc. has gained significant attention. The surface-level signals expressed by a social-text itself may not be adequate for such tasks; therefore, recent methods attempted to incorporate other intrinsic signals such as user behavior and the underlying graph structure. Oftentimes, the public wisdom expressed through the comments/replies to a social-text acts as a surrogate of crowd-sourced view and may provide us with complementary signals. State-of-the-art methods on social-text classification tend to ignore such a rich hierarchical signal. Here, we propose Hyphen, a discourse-aware hyperbolic spectral co-attention network. Hyphen is a fusion of hyperbolic graph representation learning with a novel Fourier co-attention mechanism in an attempt to generalise the social-text classification tasks by incorporating public discourse. We parse public discourse as an Abstract Meaning Representation (AMR) graph and use the powerful hyperbolic geometric representation to model graphs with hierarchical structure. Finally, we equip it with a novel Fourier co-attention mechanism to capture the correlation between the source post and public discourse. Extensive experiments on four different social-text classification tasks, namely detecting fake news, hate speech, rumour, and sarcasm, show that Hyphen generalises well, and achieves state-of-the-art results on ten benchmark datasets. We also employ a sentence-level fact-checked and annotated dataset to evaluate how Hyphen is capable of producing explanations as analogous evidence to the final prediction.


#18 Diffusion-LM Improves Controllable Text Generation [PDF] [Copy] [Kimi2] [REL]

Authors: Xiang Li, John Thickstun, Ishaan Gulrajani, Percy Liang, Tatsunori Hashimoto

Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.


#19 Precise Regret Bounds for Log-loss via a Truncated Bayesian Algorithm [PDF] [Copy] [Kimi2] [REL]

Authors: Changlong Wu, Mohsen Heidari, Ananth Grama, Wojciech Szpankowski

We study sequential general online regression, known also as sequential probability assignments, under logarithmic loss when compared against a broad class of experts. We obtain tight, often matching, lower and upper bounds for sequential minimax regret, which is defined as the excess loss incurred by the predictor over the best expert in the class. After proving a general upper bound we consider some specific classes of experts from Lipschitz class to bounded Hessian class and derive matching lower and upper bounds with provably optimal constants. Our bounds work for a wide range of values of the data dimension and the number of rounds. To derive lower bounds, we use tools from information theory (e.g., Shtarkov sum) and for upper bounds, we resort to new "smooth truncated covering" of the class of experts. This allows us to find constructive proofs by applying a simple and novel truncated Bayesian algorithm. Our proofs are substantially simpler than the existing ones and yet provide tighter (and often optimal) bounds.


#20 A permutation-free kernel two-sample test [PDF] [Copy] [Kimi2] [REL]

Authors: Shubhanshu Shekhar, Ilmun Kim, Aaditya Ramdas

The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions. The usual kernel-MMD test statistic (for two-sample testing) is a degenerate U-statistic under the null, and thus it has an intractable limiting null distribution. Hence, the standard approach for designing a level-$(1-\alpha)$ two-sample test using this statistic involves selecting the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since the test statistic must be recomputed for every permutation. We propose the cross-MMD, a new quadratic time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, it has a standard normal limiting distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample-sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.


#21 Fused Orthogonal Alternating Least Squares for Tensor Clustering [PDF] [Copy] [Kimi1] [REL]

Authors: Jiacheng Wang, Dan Nicolae

We introduce a multi-modes tensor clustering method that implements a fused version of the alternating least squares algorithm (Fused-Orth-ALS) for simultaneous tensor factorization and clustering. The statistical convergence rates of recovery and clustering are established when the data are a noise contaminated tensor with a latent low rank CP decomposition structure. Furthermore, we show that a modified alternating least squares algorithm can provably recover the true latent low rank factorization structure when the data form an asymmetric tensor with perturbation. Clustering consistency is also established. Finally, we illustrate the accuracy and computational efficient implementation of the Fused-Orth-ALS algorithm by using both simulations and real datasets.


#22 Linear tree shap [PDF2] [Copy] [Kimi2] [REL]

Authors: peng yu, Albert Bifet, Jesse Read, Chao Xu

Decision trees are well-known due to their ease of interpretability.To improve accuracy, we need to grow deep trees or ensembles of trees.These are hard to interpret, offsetting their original benefits. Shapley values have recently become a popular way to explain the predictions of tree-based machine learning models. It provides a linear weighting to features independent of the tree structure. The rise in popularity is mainly due to TreeShap, which solves a general exponential complexity problem in polynomial time. Following extensive adoption in the industry, more efficient algorithms are required. This paper presents a more efficient and straightforward algorithm: Linear TreeShap.Like TreeShap, Linear TreeShap is exact and requires the same amount of memory.


#23 Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset [PDF] [Copy] [Kimi] [REL]

Authors: Peter Henderson, Mark Krass, Lucia Zheng, Neel Guha, Christopher D Manning, Dan Jurafsky, Daniel Ho

One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a ~256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.


#24 Finite-Time Last-Iterate Convergence for Learning in Multi-Player Games [PDF] [Copy] [Kimi1] [REL]

Authors: Yang Cai, Argyris Oikonomou, Weiqiang Zheng

We study the question of last-iterate convergence rate of the extragradient algorithm by Korpelevich [1976] and the optimistic gradient algorithm by Popov [1980] in multi-player games. We show that both algorithms with constant step-size have last-iterate convergence rate of $O(\frac{1}{\sqrt{T}})$ to a Nash equilibrium in terms of the gap function in smooth monotone games, where each player's action set is an arbitrary convex set. Previous results only study the unconstrained setting, where each player's action set is the entire Euclidean space. Our results address an open question raised in several recent work by Hsieh et al. [2019], Golowich et al. [2020a,b], who ask for last-iterate convergence rate of either the extragradient or the optimistic gradient algorithm in the constrained setting. Our convergence rates for both algorithms are tight and match the lower bounds by Golowich et al. [2020a,b]. At the core of our results lies a new notion -- the tangent residual, which we use to measure the proximity to equilibrium. We use the tangent residual (or a slight variation of the tangent residual) as the the potential function in our analysis of the extragradient algorithm (or the optimistic gradient algorithm) and prove that it is non-increasing between two consecutive iterates.


#25 Single-phase deep learning in cortico-cortical networks [PDF] [Copy] [Kimi1] [REL]

Authors: Will Greedy, Heng Wei Zhu, Joseph Pemberton, Jack Mellor, Rui Ponte Costa

The error-backpropagation (backprop) algorithm remains the most common solution to the credit assignment problem in artificial neural networks. In neuroscience, it is unclear whether the brain could adopt a similar strategy to correctly modify its synapses. Recent models have attempted to bridge this gap while being consistent with a range of experimental observations. However, these models are either unable to effectively backpropagate error signals across multiple layers or require a multi-phase learning process, neither of which are reminiscent of learning in the brain. Here, we introduce a new model, Bursting Cortico-Cortical Networks (BurstCCN), which solves these issues by integrating known properties of cortical networks namely bursting activity, short-term plasticity (STP) and dendrite-targeting interneurons. BurstCCN relies on burst multiplexing via connection-type-specific STP to propagate backprop-like error signals within deep cortical networks. These error signals are encoded at distal dendrites and induce burst-dependent plasticity as a result of excitatory-inhibitory top-down inputs. First, we demonstrate that our model can effectively backpropagate errors through multiple layers using a single-phase learning process. Next, we show both empirically and analytically that learning in our model approximates backprop-derived gradients. Finally, we demonstrate that our model is capable of learning complex image classification tasks (MNIST and CIFAR-10). Overall, our results suggest that cortical features across sub-cellular, cellular, microcircuit and systems levels jointly underlie single-phase efficient deep learning in the brain.