NeurIPS.2025 - Spotlight

| Total: 687

#1 ModHiFi: Identifying High Fidelity predictive components for Model Modification [PDF15] [Copy] [Kimi16] [REL]

Authors: Dhruva Kashyap, Chaitanya Murti, Pranav K Nayak, Tanay Narshana, Chiranjib Bhattacharyya

Modifying well-trained models for purposes such as pruning or unlearning, without access to training data or the original loss function, is a challenging problem. While techniques exist for such modification, they often require training data, are computationally expensive, or are architecture-specific. To address this, we investigate the fundamental question of identifying components that are critical to the model’s predictive performance, without access to either gradients or the loss function, and with only distributional access such as synthetic data. We theoretically demonstrate that the global reconstruction error is linearly bounded by local reconstruction errors for Lipschitz-continuous networks such as CNNs and well-trained Transformers (which, contrary to existing literature, we find exhibit Lipschitz continuity). This motivates using the locally reconstructive behavior of component subsets to quantify their global importance, via a metric that we term *Subset Fidelity*. In the uncorrelated features setting, selecting individual components via their Subset Fidelity scores is optimal, which we use to propose **ModHiFi**, an algorithm for model modification that requires no training data or loss function access. **ModHiFi-P**, for structured pruning, achieves an 11% speedup over the current state of the art on ImageNet models and competitive performance on language models. **ModHiFi-U**, for classwise unlearning, achieves complete unlearning on CIFAR-10 without fine-tuning and demonstrates competitive performance on Swin Transformers.

Subject: NeurIPS.2025 - Spotlight


#2 The Structure of Relation Decoding Linear Operators in Large Language Models [PDF5] [Copy] [Kimi13] [REL]

Authors: Miranda Anna Christ, Adrián Csiszárik, Gergely Becsó, Dániel Varga

This paper investigates the structure of linear operators introduced in Hernandez et al. [2023] that decode specific relational facts in transformer language models. We extend their single-relation findings to a collection of relations and systematically chart their organization. We show that such collections of relation decoders can be highly compressed by simple order-3 tensor networks without significant loss in decoding accuracy. To explain this surprising redundancy, we develop a cross-evaluation protocol, in which we apply each linear decoder operator to the subjects of every other relation. Our results reveal that these linear maps do not encode distinct relations, but extract recurring, coarse-grained semantic properties (e.g., country of capital city and country of food are both in the country-of-X property). This property-centric structure clarifies both the operators' compressibility and highlights why they generalize only to new relations that are semantically close. Our findings thus interpret linear relational decoding in transformer language models as primarily property-based, rather than relation-specific.

Subject: NeurIPS.2025 - Spotlight


#3 KLASS: KL-Guided Fast Inference in Masked Diffusion Models [PDF14] [Copy] [Kimi8] [REL]

Authors: Seo Hyun Kim, Sunwoo Hong, Hojung Jung, Youngrok Park, Se-Young Yun

Masked diffusion models have demonstrated competitive results on various tasks including language generation. However, due to its iterative refinement process, the inference is often bottlenecked by slow and static sampling speed. To overcome this problem, we introduce `KL-Adaptive Stability Sampling' (KLASS), a fast yet effective sampling method that exploits token-level KL divergence to identify stable, high-confidence predictions. By unmasking multiple tokens in each iteration without any additional model training, our approach speeds up generation significantly while maintaining sample quality. On reasoning benchmarks, KLASS achieves up to $2.78\times$ wall-clock speedups while improving performance over standard greedy decoding, attaining state-of-the-art results among diffusion-based samplers. We further validate KLASS across diverse domains, including text, image, and molecular generation, showing its effectiveness as a broadly applicable sampler across different models.

Subject: NeurIPS.2025 - Spotlight


#4 HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models [PDF7] [Copy] [Kimi7] [REL]

Authors: Yu Zhou, Xingyu Wu, Jibin Wu, Liang Feng, KC Tan

Model merging is a technique that combines multiple large pretrained models into a single model, enhancing performance and broadening task adaptability without original data or additional training. However, most existing model merging methods focus primarily on exploring the parameter space, merging models with identical architectures. Despite its potential, merging in the architecture space remains in its early stages due to the vast search space and challenges related to layer compatibility. This paper designs a hierarchical model merging framework named HM3, formulating a bilevel multi-objective model merging problem across both parameter and architecture spaces. At the parameter level, HM3 integrates existing merging methods to quickly identify optimal parameters. Based on these, an actor-critic strategy with efficient policy discretization is employed at the architecture level to explore inference paths with Markov property in the layer-granularity search space for reconstructing these optimal models. By training reusable policy and value networks, HM3 learns Pareto optimal models to provide customized solutions for various tasks. Experimental results on language and vision tasks demonstrate that HM3 outperforms methods focusing solely on the parameter or architecture space.

Subject: NeurIPS.2025 - Spotlight


#5 Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models [PDF2] [Copy] [Kimi5] [REL]

Authors: Aleksandar Terzic, Nicolas Menet, Michael Hersche, Thomas Hofmann, Abbas Rahimi

Modern state-space models (SSMs) often utilize structured transition matrices which enable efficient computation but pose restrictions on the model’s expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost, even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with provably optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, \emph{PD-SSM}, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). As a result, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N ×N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multivariate time-series classification, it outperforms neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded into sets of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model.

Subject: NeurIPS.2025 - Spotlight


#6 Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning [PDF13] [Copy] [Kimi11] [REL]

Authors: Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han, Mingyu Gao

Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been of great importance recently. However, most existing sparse attention algorithms use a fixed budget of how many tokens to use in their computations. This simple static decision raises critical issues in real-world deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we reveal a key insight that leveraging the idea of top-$p$ sampling (a.k.a., nucleus sampling) in sparse attention could enable efficient and adaptive budget decisions. Based on this, we propose Twilight, a framework that enhances any existing sparse attention algorithm with adaptive budget decision capabilities without sacrificing accuracy. Empirical results show that Twilight can adaptively prune up to 98% tokens with nearly no accuracy loss in both mid- and long-context scenarios, leading to a $1.4\times$ speedup over state-of-the-art sparse attention mechanisms.

Subject: NeurIPS.2025 - Spotlight


#7 An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation [PDF4] [Copy] [Kimi8] [REL]

Authors: UZAIR AKBAR, Niki Kilbertus, Hao Shen, Krikamol Muandet, Bo Dai

The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs)—sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of *IV-like (IVL)* regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.

Subject: NeurIPS.2025 - Spotlight


#8 Deciphering the Extremes: A Novel Approach for Pathological Long-tailed Recognition in Scientific Discovery [PDF7] [Copy] [Kimi5] [REL]

Authors: Zhe Zhao, HaiBin Wen, Xianfu Liu, Rui Mao, Pengkun Wang, Liheng Yu, Linjiang Chen, Bo An, Qingfu Zhang, Yang Wang

Scientific discovery across diverse fields increasingly grapples with datasets exhibiting pathological long-tailed distributions: a few common phenomena overshadow a multitude of rare yet scientifically critical instances. Unlike standard benchmarks, these scientific datasets often feature extreme imbalance coupled with a modest number of classes and limited overall sample volume, rendering existing long-tailed recognition (LTR) techniques ineffective. Such methods, biased by majority classes or prone to overfitting on scarce tail data, frequently fail to identify the very instances—novel materials, rare disease biomarkers, faint astronomical signals—that drive scientific breakthroughs. This paper introduces a novel, end-to-end framework explicitly designed to address pathological long-tailed recognition in scientific contexts. Our approach synergizes a Balanced Supervised Contrastive Learning (B-SCL) mechanism, which enhances the representation of tail classes by dynamically re-weighting their contributions, with a Smooth Objective Regularization (SOR) strategy that manages the inherent tension between tail-class focus and overall classification performance. We introduce and analyze the real-world ZincFluor chemical dataset ($\mathcal{T}=137.54$) and synthetic benchmarks with controllable extreme imbalances (CIFAR-LT variants). Extensive evaluations demonstrate our method's superior ability to decipher these extremes. Notably, on ZincFluor, our approach achieves a Tail Top-2 accuracy of $66.84\%$, significantly outperforming existing techniques. On CIFAR-10-LT with an imbalance ratio of $1000$ ($\mathcal{T}=100$), our method achieves a tail-class accuracy of $38.99\%$, substantially leading the next best. These results underscore our framework's potential to unlock novel insights from complex, imbalanced scientific datasets, thereby accelerating discovery.

Subject: NeurIPS.2025 - Spotlight


#9 OpenCUA: Open Foundations for Computer-Use Agents [PDF12] [Copy] [Kimi12] [REL]

Authors: Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen, Zheng Boyuan, LI PEIHANG, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin, Hu Jiarui, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Yipu Wang, Heng Wang, Diyi Yang, Victor Zhong, Y.Charles, Zhilin Yang, Tao Yu

Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state–action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-72B achieves an average success rate of 45.0% on OSWorld‑Verified, establishing a new state-of-the-art (SOTA) among open-source models. Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.

Subject: NeurIPS.2025 - Spotlight


#10 Near-Optimal Experiment Design in Linear non-Gaussian Cyclic Models [PDF] [Copy] [Kimi2] [REL]

Authors: Ehsan Sharifian, Saber Salehkaleybar, Negar Kiyavash

We study the problem of causal structure learning from a combination of observational and interventional data generated by a linear non-Gaussian structural equation model that might contain cycles. Recent results show that using mere observational data identifies the causal graph only up to a permutation-equivalence class. We obtain a combinatorial characterization of this class by showing that each equivalence class corresponds to a perfect matching in a bipartite graph. This bipartite representation allows us to analyze how interventions modify or constrain the matchings. Specifically, we show that each atomic intervention reveals one edge of the true matching and eliminates all incompatible causal graphs. Consequently, we formalize the optimal experiment design task as an adaptive stochastic optimization problem over the set of equivalence classes with a natural reward function that quantifies how many graphs are eliminated from the equivalence class by an intervention. We show that this reward function is adaptive submodular and provide a greedy policy with a provable near-optimal performance guarantee. A key technical challenge is to efficiently estimate the reward function without having to explicitly enumerate all the graphs in the equivalence class. We propose a sampling-based estimator using random matchings and analyze its bias and concentration behavior. Our simulation results show that performing a small number of interventions guided by our stochastic optimization framework recovers the true underlying causal structure.

Subject: NeurIPS.2025 - Spotlight


#11 Escaping saddle points without Lipschitz smoothness: the power of nonlinear preconditioning [PDF3] [Copy] [Kimi2] [REL]

Authors: Alexander Bodard, Panagiotis Patrinos

We study generalized smoothness in nonconvex optimization, focusing on $(L_0, L_1)$-smoothness and anisotropic smoothness. The former was empirically derived from practical neural network training examples, while the latter arises naturally in the analysis of nonlinearly preconditioned gradient methods. We introduce a new sufficient condition that encompasses both notions, reveals their close connection, and holds in key applications such as phase retrieval and matrix factorization. Leveraging tools from dynamical systems theory, we then show that nonlinear preconditioning—including gradient clipping—preserves the saddle point avoidance property of classical gradient descent. Crucially, the assumptions required for this analysis are actually satisfied in these applications, unlike in classical results that rely on restrictive Lipschitz smoothness conditions. We further analyze a perturbed variant that efficiently attains second-order stationarity with only logarithmic dependence on dimension, matching similar guarantees of classical gradient methods.

Subject: NeurIPS.2025 - Spotlight


#12 Activation Control for Efficiently Eliciting Long Chain-of-thought Ability of Language Models [PDF15] [Copy] [Kimi17] [REL]

Authors: Zekai Zhao, Qi Liu, Kun Zhou, Zihan Liu, Yifei Shao, Zhiting Hu, Biwei Huang

Despite the remarkable reasoning performance, eliciting the long chain-of-thought(CoT) ability in large language models(LLMs) typically requires costly reinforcement learning or supervised fine-tuning on high-quality distilled data. We investigate the internal mechanisms behind this capability and show that a small set of high-impact activations in the last few layers, greatly govern the long-form reasoning attributes, e.g. output length and self-reflection. Through simply amplifying these activations and adding ``wait'' tokens, the long CoT ability can be invoked without training, leading to significantly increased self-reflection rate and accuracy. In addition, we also find that the activation changes follow predictable trajectories, i.e. a sharp rise after special tokens and a subsequent exponential decay. Based on these insights, we introduce a general training-free activation control technique. It utilizes a few contrastive examples to identify the relevant activations, and then incorporates simple analytic functions to adjust their values at inference time to elicit long CoTs. Extensive experiments have verified the effectiveness of our methods in efficiently eliciting the long CoT ability of LLMs and improving the performance. Besides, we further propose a parameter-efficient fine-tuning method that trains only the last-layer activation amplification module and a few LoRA layers, outperforming LoRA on reasoning benchmarks with much fewer parameters. Our code and data will be fully public released.

Subject: NeurIPS.2025 - Spotlight


#13 Direct Fisher Score Estimation for Likelihood Maximization [PDF3] [Copy] [Kimi3] [REL]

Authors: Sherman Khoo, Yakun Wang, Song Liu, Mark Beaumont

We study the problem of likelihood maximization when the likelihood function is intractable but model simulations are readily available. We propose a sequential, gradient-based optimization method that directly models the Fisher score based on a local score matching technique which uses simulations from a localized region around each parameter iterate. By employing a linear parameterization for the surrogate score model, our technique admits a closed-form, least-squares solution. This approach yields a fast, flexible, and efficient approximation to the Fisher score, effectively smoothing the likelihood objective and mitigating the challenges posed by complex likelihood landscapes. We provide theoretical guarantees for our score estimator, including bounds on the bias introduced by the smoothing. Empirical results on a range of synthetic and real-world problems demonstrate the superior performance of our method compared to existing benchmarks.

Subject: NeurIPS.2025 - Spotlight


#14 Path-Enhanced Contrastive Learning for Recommendation [PDF8] [Copy] [Kimi7] [REL]

Authors: Haoran Sun, Fei Xiong, Yuanzhe Hu, Liang Wang

Collaborative filtering (CF) methods are now facing the challenge of data sparsity in recommender systems. In order to reduce the effect of data sparsity, researchers proposed contrastive learning methods to extract self-supervised signals from raw data. Contrastive learning methods address this problem by graph augmentation and maximizing the consistency of node representations between different augmented graphs. However, these methods tends to unintentionally distance the target node from its path nodes on the interaction path, thus limiting its effectiveness. In this regard, we propose a solution that uses paths as samples in the contrastive loss function. In order to obtain the path samples, we design a path sampling method. In addition to the contrast of the relationship between the target node and the nodes within the path (intra-path contrast), we also designed a method of contrasting the relationship between the paths (inter-path contrast) to better pull the target node and its path nodes closer to each other. We use Simplifying and Powering Graph Convolution Network (LightGCN) as the basis and combine with a new path-enhanced graph approach proposed for graph augmentation. It effectively improves the performance of recommendation models. Our proposed Path Enhanced Contrastive Loss (PECL) model replaces the common contrastive loss function with our novel loss function, showing significant performance improvement. Experiments on three real-world datasets demonstrate the effectiveness of our model.

Subject: NeurIPS.2025 - Spotlight


#15 T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning [PDF5] [Copy] [Kimi5] [REL]

Authors: Julie Mordacq, David Loiseaux, Vicky Kalogeiton, Steve Oudot

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.

Subject: NeurIPS.2025 - Spotlight


#16 Generating Informative Samples for Risk-Averse Fine-Tuning of Downstream Tasks [PDF5] [Copy] [Kimi3] [REL]

Authors: Heasung Kim, Taekyun Lee, Hyeji Kim, Gustavo De Veciana

Risk-averse modeling is critical in safety-sensitive and high-stakes applications. Conditional Value-at-Risk (CVaR) quantifies such risk by measuring the expected loss in the tail of the loss distribution, and minimizing it provides a principled framework for training robust models. However, direct CVaR minimization remains challenging due to the difficulty of accurately estimating rare, high-loss events—particularly at extreme quantiles. In this work, we propose a novel training framework that synthesizes informative samples for CVaR optimization using score-based generative models. Specifically, we guide a diffusion-based generative model to sample from a reweighted distribution that emphasizes inputs likely to incur high loss under a pretrained reference model. These samples are then incorporated via a loss-weighted importance sampling scheme to reduce noise in stochastic optimization. We establish convergence guarantees and show that the synthesized, high-loss-emphasized dataset substantially contributes to the noise reduction. Empirically, we validate the effectiveness of our approach across multiple settings, including a real-world wireless channel compression task, where our method achieves significant improvements over standard risk minimization strategies.

Subject: NeurIPS.2025 - Spotlight


#17 AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play [PDF8] [Copy] [Kimi10] [REL]

Authors: Ran Xu, Yuchen Zhuang, Zihan Dong, Ruiyu Wang, Yue Yu, Joyce C. Ho, Linjun Zhang, Haoyu Wang, Wenqi Shi, Carl Yang

Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the giant DeepSeek-V3 model using less than 5% of iits parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9× more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks.

Subject: NeurIPS.2025 - Spotlight


#18 DeltaFlow: An Efficient Multi-frame Scene Flow Estimation Method [PDF3] [Copy] [Kimi2] [REL]

Authors: Qingwen Zhang, Xiaomeng Zhu, Yushan Zhang, Yixi Cai, Olov Andersson, Patric Jensfelt

Previous dominant methods for scene flow estimation focus mainly on input from two consecutive frames, neglecting valuable information in the temporal domain. While recent trends shift towards multi-frame reasoning, they suffer from rapidly escalating computational costs as the number of frames grows. To leverage temporal information more efficiently, we propose DeltaFlow ($\Delta$Flow), a lightweight 3D framework that captures motion cues via a $\Delta$ scheme, extracting temporal features with minimal computational cost, regardless of the number of frames. Additionally, scene flow estimation faces challenges such as imbalanced object class distributions and motion inconsistency. To tackle these issues, we introduce a Category-Balanced Loss to enhance learning across underrepresented classes and an Instance Consistency Loss to enforce coherent object motion, improving flow accuracy. Extensive evaluations on the Argoverse 2, Waymo and nuScenes datasets show that $\Delta$Flow achieves state-of-the-art performance with up to 22\% lower error and $2\times$ faster inference compared to the next-best multi-frame supervised method, while also demonstrating a strong cross-domain generalization ability. The code is open-sourced at https://github.com/Kin-Zhang/DeltaFlow along with trained model weights.

Subject: NeurIPS.2025 - Spotlight


#19 Web-Shepherd: Advancing PRMs for Reinforcing Web Agents [PDF7] [Copy] [Kimi2] [REL]

Authors: Hyungjoo Chae, Sunghwan Kim, Junhee Cho, Seungone Kim, Seungjun Moon, Gyeom Hwangbo, Dongha Lim, Minjin Kim, Yeonjun Hwang, Minju Gwak, Dongwook Choi, Minseok Kang, Gwanhoon Im, ByeongUng Cho, Hyojun Kim, Jun Hee Han, Taeyoon Kwon, Minju Kim, Beong-woo Kwak, Dongjin Kang, Jinyoung Yeo

Web navigation is a unique domain that can automate many repetitive real-life tasks and is challenging as it requires long-horizon sequential decision making beyond typical multimodal large language model (MLLM) tasks. Yet, specialized reward models for web navigation that can be utilized during both training and test-time have been absent until now. Despite the importance of speed and cost-effectiveness, prior works have utilized MLLMs as reward models, which poses significant constraints for real-world deployment. To address this, in this work, we propose the first process reward model (PRM) called Web-Shepherd which could assess web navigation trajectories in a step-level. To achieve this, we first construct the WebPRM Collection, a large-scale dataset with 40K step-level preference pairs and annotated checklists spanning diverse domains and difficulty levels. Next, we also introduce the WebRewardBench, the first meta-evaluation benchmark for evaluating PRMs. In our experiments, we observe that our Web-Shepherd achieves about 30 points better accuracy compared to using GPT-4o on WebRewardBench. Furthermore, when testing on WebArena-lite by using GPT-4o-mini as the policy and Web-Shepherd as the verifier, we achieve 10.9 points better performance, in 10x less cost compared to using GPT-4o-mini as the verifier. Our model, dataset, and code are publicly available at https://github.com/kyle8581/Web-Shepherd.

Subject: NeurIPS.2025 - Spotlight


#20 How do Transformers Learn Implicit Reasoning? [PDF17] [Copy] [Kimi11] [REL]

Authors: Jiaran Ye, Zijun Yao, Zhidian Huang, Liangming Pan, Jinxin Liu, Yushi Bai, Amy Xin, Liu Weichuan, Xiaoyin Che, Lei Hou, Juanzi Li

Recent work suggests that large language models (LLMs) can perform multi-hop reasoning implicitly---producing correct answers without explicitly verbalizing intermediate steps---but the underlying mechanisms remain poorly understood. In this paper, we study how such implicit reasoning emerges by training transformers from scratch in a controlled symbolic environment. Our analysis reveals a three-stage developmental trajectory: early memorization, followed by in-distribution generalization, and eventually cross-distribution generalization. We find that training with atomic triples is not necessary but accelerates learning, and that second-hop generalization relies on query-level exposure to specific compositional structures. To interpret these behaviors, we introduce two diagnostic tools: cross-query semantic patching, which identifies semantically reusable intermediate representations, and a cosine-based representational lens, which reveals that successful reasoning correlates with the cosine-base clustering in hidden space. This clustering phenomenon in turn provides a coherent explanation for the behavioral dynamics observed across training, linking representational structure to reasoning capability. These findings provide new insights into the interpretability of implicit multi-hop reasoning in LLMs, helping to clarify how complex reasoning processes unfold internally and offering pathways to enhance the transparency of such models.

Subject: NeurIPS.2025 - Spotlight


#21 On the sample complexity of semi-supervised multi-objective learning [PDF4] [Copy] [Kimi2] [REL]

Authors: Tobias Wegel, Geelon So, Junhyung Park, Fanny Yang

In multi-objective learning (MOL), several possibly competing prediction tasks must be solved jointly by a single model. Achieving good trade-offs may require a model class $\mathcal{G}$ with larger capacity than what is necessary for solving the individual tasks. This, in turn, increases the statistical cost, as reflected in known MOL bounds that depend on the complexity of $\mathcal{G}$. We show that this cost is unavoidable for some losses, even in an idealized semi-supervised setting, where the learner has access to the Bayes-optimal solutions for the individual tasks as well as the marginal distributions over the covariates. On the other hand, for objectives defined with Bregman losses, we prove that the complexity of $\mathcal{G}$ may come into play only in terms of unlabeled data. Concretely, we establish sample complexity upper bounds, showing precisely when and how unlabeled data can significantly alleviate the need for labeled data. This is achieved by a simple pseudo-labeling algorithm.

Subject: NeurIPS.2025 - Spotlight


#22 Diversity-Aware Policy Optimization for Large Language Model Reasoning [PDF11] [Copy] [Kimi5] [REL]

Authors: Jian Yao, Ran Cheng, Xingyu Wu, Jibin Wu, KC Tan

The reasoning capabilities of large language models (LLMs) have advanced rapidly, particularly following the release of DeepSeek-R1, which has inspired a surge of research into data quality and reinforcement learning (RL) algorithms. Despite the pivotal role diversity plays in RL, its influence on LLM reasoning remains largely underexplored. To bridge this gap, this work presents a systematic investigation into the impact of diversity in RL-based training for LLM reasoning, and proposes a novel diversity-aware policy optimization method. Across evaluations on 12 LLMs, we observe a strong positive correlation between the solution diversity and potential@k (a novel metric quantifying an LLM’s reasoning potential) in high-performing models. This finding motivates our method to explicitly promote diversity during RL training. Specifically, we design a token-level diversity and reformulate it into a practical objective, then we selectively apply it to positive samples. Integrated into the R1-zero training framework, our method achieves a 3.5\% average improvement across four mathematical reasoning benchmarks, while generating more diverse and robust solutions.

Subject: NeurIPS.2025 - Spotlight


#23 Fixed-Point RNNs: Interpolating from Diagonal to Dense [PDF4] [Copy] [Kimi3] [REL]

Authors: Sajad Movahedi, Felix Sarnthein, Nicola Muca Cirone, Antonio Orvieto

Linear recurrent neural networks (RNNs) and state-space models (SSMs) such as Mamba have become promising alternatives to softmax-attention as sequence mixing layers in Transformer architectures. Current models, however, do not exhibit the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e. diagonal) sequence mixing. In this paper, we investigate parameterizations of a large class of dense linear RNNs as fixed-points of parallelizable diagonal linear RNNs. The resulting models can naturally trade expressivity for efficiency at a fixed number of parameters and achieve state-of-the-art results on the state-tracking benchmarks $A_5$ and $S_5$, while matching performance on copying and other tasks.

Subject: NeurIPS.2025 - Spotlight


#24 Bridging Theory and Practice in Link Representation with Graph Neural Networks [PDF4] [Copy] [Kimi] [REL]

Authors: Veronica Lachi, Francesco Ferrini, Antonio Longa, Bruno Lepri, Andrea Passerini, Manfred Jaeger

Graph Neural Networks (GNNs) are widely used to compute representations of node pairs for downstream tasks such as link prediction. Yet, theoretical understanding of their expressive power has focused almost entirely on graph-level representations. In this work, we shift the focus to links and provide the first comprehensive study of GNN expressiveness in link representation. We introduce a unifying framework, the $k_\phi$-$k_\rho$-$m$ framework, that subsumes existing message-passing link models and enables formal expressiveness comparisons. Using this framework, we derive a hierarchy of state-of-the-art methods and offer theoretical tools to analyze future architectures. To complement our analysis, we propose a synthetic evaluation protocol comprising the first benchmark specifically designed to assess link-level expressiveness. Finally, we ask: does expressiveness matter in practice? We use a graph symmetry metric that quantifies the difficulty of distinguishing links and show that while expressive models may underperform on standard benchmarks, they significantly outperform simpler ones as symmetry increases, highlighting the need for dataset-aware model selection.

Subject: NeurIPS.2025 - Spotlight


#25 ErrorTrace: A Black-Box Traceability Mechanism Based on Model Family Error Space [PDF2] [Copy] [Kimi4] [REL]

Authors: Chuanchao Zang, Xiangtao Meng, Wenyu Chen, Tianshuo Cong, Zha Yaxing, Dong Qi, Zheng Li, Shanqing Guo

The open-source release of large language models (LLMs) enables malicious users to create unauthorized derivative models at low cost, posing significant threats to intellectual property (IP) and market stability. Existing IP protection methods either require access to model parameters or are vulnerable to fine-tuning attacks. To fill this gap, we propose ErrorTrace, a robust and black-box traceability mechanism for protecting LLM IP. Specifically, ErrorTrace leverages the unique error patterns of model families by mapping and analyzing their distinct error spaces, enabling robust and efficient IP protection without relying on internal parameters or specific query responses. Experimental results show that ErrorTrace achieves a traceability accuracy of 0.8518 for 27 base models when the suspect model is not included in ErrorTrace's training set, outperforming the baseline by 0.2593. Additionally,ErrorTrace successfully tracks 34 fine-tuned, pruned and merged models across various scenarios, demonstrating its broad applicability and robustness. In addition, ErrorTrace shows a certain level of resilience when subjected to adversarial attacks. Our code is available at: https://github.com/csdatazcc/ErrorTrace.

Subject: NeurIPS.2025 - Spotlight