Oir5nKRKVP@OpenReview

Total: 1

#1 Learning Stochastic Multiscale Models [PDF] [Copy] [Kimi] [REL]

Authors: Andrew Francesco Ilersich, Prasanth B. Nair

The physical sciences are replete with dynamical systems that require the resolution of a wide range of length and time scales. This presents significant computational challenges since direct numerical simulation requires discretization at the finest relevant scales, leading to a high-dimensional state space. In this work, we propose an approach to learn stochastic multiscale models in the form of stochastic differential equations directly from observational data. Drawing inspiration from physics-based multiscale modeling approaches, we resolve the macroscale state on a coarse mesh while introducing a microscale latent state to explicitly model unresolved dynamics. We learn the parameters of the multiscale model using a simulator-free amortized variational inference method with a Product of Experts likelihood that enforces scale separation. We present detailed numerical studies to demonstrate that our learned multiscale models achieve superior predictive accuracy compared to under-resolved direct numerical simulation and closure-type models at equivalent resolution, as well as reduced-order modeling approaches.

Subject: NeurIPS.2025 - Poster