P19-2022@ACL

Total: 1

#1 Towards Incremental Learning of Word Embeddings Using Context Informativeness [PDF] [Copy] [Kimi1] [REL]

Authors: Alexandre Kabbach, Kristina Gulordava, Aurélie Herbelot

In this paper, we investigate the task of learning word embeddings from very sparse data in an incremental, cognitively-plausible way. We focus on the notion of ‘informativeness’, that is, the idea that some content is more valuable to the learning process than other. We further highlight the challenges of online learning and argue that previous systems fall short of implementing incrementality. Concretely, we incorporate informativeness in a previously proposed model of nonce learning, using it for context selection and learning rate modulation. We test our system on the task of learning new words from definitions, as well as on the task of learning new words from potentially uninformative contexts. We demonstrate that informativeness is crucial to obtaining state-of-the-art performance in a truly incremental setup.