PX29zF9wRb@OpenReview

Total: 1

#1 AI for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N [PDF] [Copy] [Kimi] [REL]

Authors: Tianyu Zhang, Andrew Williams, Phillip Wozny, Kai-Hendrik Cohrs, Koen Ponse, Marco Jiralerspong, Soham Phade, Sunil Srinivasa, Lu Li, Yang Zhang, Prateek Gupta, Erman Acar, Irina Rish, Yoshua Bengio, Stephan Zheng

Global cooperation on climate change mitigation is essential to limit temperature increases while supporting long-term, equitable economic growth and sustainable development. Achieving such cooperation among diverse regions, each with different incentives, in a dynamic environment shaped by complex geopolitical and economic factors, without a central authority, is a profoundly challenging game-theoretic problem. This article introduces RICE-N, a multi-region integrated assessment model that simulates the global climate, economy, and climate negotiations and agreements. RICE-N uses multi-agent reinforcement learning (MARL) to encourage agents to develop strategic behaviors based on the environmental dynamics and the actions of the others. We present two negotiation protocols: (1) Bilateral Negotiation, an exemplary protocol and (2) Basic Club, inspired from Climate Clubs and the carbon border adjustment mechanism (Nordhaus, 2015; Comissions, 2022). We compare their impact against a no-negotiation baseline with various mitigation strategies, showing that both protocols significantly reduce temperature growth at the cost of a minor drop in production while ensuring a more equitable distribution of the emission reduction costs.

Subject: ICML.2025 - Poster