Total: 1
Subgraph neural networks have recently gained prominence for various subgraph-level predictive tasks. However, existing methods either \emph{1)} apply simple standard pooling over graph convolutional networks, failing to capture essential subgraph properties, or \emph{2)} rely on rigid subgraph definitions, leading to suboptimal performance. Moreover, these approaches fail to model long-range dependencies both between and within subgraphs—a critical limitation, as many real-world networks contain subgraphs of varying sizes and connectivity patterns. In this paper, we propose a novel implicit subgraph neural network, the first of its kind, designed to capture dependencies across subgraphs. Our approach also integrates label-aware subgraph-level information. We formulate implicit subgraph learning as a bilevel optimization problem and develop a provably convergent algorithm that requires fewer gradient estimations than standard bilevel optimization methods. We evaluate our approach on real-world networks against state-of-the-art baselines, demonstrating its effectiveness and superiority.