QqGw9StPbQ@OpenReview

Total: 1

#1 NETS: A Non-equilibrium Transport Sampler [PDF] [Copy] [Kimi] [REL]

Authors: Michael Albergo, Eric Vanden-Eijnden

We introduce the Non-Equilibrium Transport Sampler (NETS), an algorithm for sampling from unnormalized probability distributions. NETS builds on non-equilibrium sampling strategies that transport a simple base distribution into the target distribution in finite time, as pioneered in Neal's annealed importance sampling (AIS). In the continuous-time setting, this transport is accomplished by evolving walkers using Langevin dynamics with a time-dependent potential, while simultaneously evolving importance weights to debias their solutions following Jarzynski's equality. The key innovation of NETS is to add to the dynamics a learned drift term that offsets the need for these corrective weights by minimizing their variance through an objective that can be estimated without backpropagation and provably bounds the Kullback-Leibler divergence between the estimated and target distributions. NETS provides unbiased samples and features a tunable diffusion coefficient that can be adjusted after training to maximize the effective sample size. In experiments on standard benchmarks, high-dimensional Gaussian mixtures, and statistical lattice field theory models, NETS shows compelling performances.

Subject: ICML.2025 - Poster