Total: 1
Author: Daniel Safari
Research on bundle adjustment has focused on photo collections where each image is accompanied by its own set of camera parameters. However, real-world applications overwhelmingly call for shared intrinsics bundle adjustment (SI-BA) where camera parameters are shared across multiple images. Utilizing overlooked optimization opportunities specific to SI-BA, most notably matrix-free computation, we present a solver that is eight times faster than alternatives while consuming a tenth of the memory. Additionally, we examine reasons for BA instability under single-precision computation and propose minimal mitigations.
Subject: CVPR.2025 - Poster
Include(OR):
Exclude:
Magic Token:
Kimi Language:
Desc Language:
Bug report? Issue submit? Please visit:
Github: https://github.com/bojone/papers.cool
Please read our Disclaimer before proceeding.
For more interesting features, please visit kexue.fm and kimi.ai.