Stuyck_Quaffure_Real-Time_Quasi-Static_Neural_Hair_Simulation@CVPR2025@CVF

Total: 1

#1 Quaffure: Real-Time Quasi-Static Neural Hair Simulation [PDF] [Copy] [Kimi] [REL]

Authors: Tuur Stuyck, Gene Wei-Chin Lin, Egor Larionov, Hsiao-yu Chen, Aljaz Bozic, Nikolaos Sarafianos, Doug Roble

Realistic hair motion is crucial for high-quality avatars, but it is often limited by the computational resources available for real-time applications. To address this challenge, we propose a novel neural approach to predict physically plausible hair deformations that generalizes to various body poses, shapes, and hair styles. Our model is trained using a self-supervised loss, eliminating the need for expensive data generation and storage. We demonstrate our method's effectiveness through numerous results across a wide range of pose and shape variations, showcasing its robust generalization capabilities and temporally smooth results. Our approach is highly suitable for real-time applications with an inference time of only a few milliseconds on consumer hardware and its ability to scale to predicting 1000 grooms in 0.3 seconds. Code will be released.

Subject: CVPR.2025 - Poster