Thawakar_Beyond_Simple_Edits_Composed_Video_Retrieval_with_Dense_Modifications@ICCV2025@CVF

Total: 1

#1 Beyond Simple Edits: Composed Video Retrieval with Dense Modifications [PDF] [Copy] [Kimi] [REL]

Authors: Omkar Thawakar, Dmitry Demidov, Ritesh Thawkar, Rao Muhammad Anwer, Mubarak Shah, Fahad Shahbaz Khan, Salman Khan

Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content.The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model will be publicly released.

Subject: ICCV.2025 - Poster