Vzi96rTe4w@OpenReview

Total: 1

#1 scPilot: Large Language Model Reasoning Toward Automated Single-Cell Analysis and Discovery [PDF] [Copy] [Kimi] [REL]

Authors: Yiming Gao, Zhen Wang, Jefferson Chen, Mark Antkowiak, Mengzhou Hu, JungHo Kong, Dexter Pratt, Jieyuan Liu, Enze Ma, Zhiting Hu, Eric P. Xing

We present scPilot, the first systematic framework to practice \textit{omics-native reasoning}: a large language model (LLM) converses in natural language while directly inspecting single-cell RNA-seq data and on-demand bioinformatics tools. scPilot converts core single-cell analyses, i.e., cell-type annotation, developmental-trajectory reconstruction, and transcription-factor targeting, into step-by-step reasoning problems that the model must solve, justify, and, when needed, revise with new evidence. To measure progress, we release \scbench, a suite of 9 expertly curated datasets and graders that faithfully evaluate the omics-native reasoning capability of scPilot w.r.t various LLMs. Experiments with o1 show that \textit{iterative} omics-native reasoning lifts average accuracy by 11\% for cell-type annotation and Gemini 2.5 Pro cuts trajectory graph-edit distance by 30\% versus one-shot prompting, while generating transparent reasoning traces that explain marker gene ambiguity and regulatory logic. By grounding LLMs in raw omics data, scPilot enables auditable, interpretable, and diagnostically informative single-cell analyses.

Subject: NeurIPS.2025 - Poster