Total: 1
Personalized learning, especially data-based methods, has garnered widespread attention in recent years, aiming to meet individual student needs. However, many works rely on the implicit assumption that benchmarks are high-quality and well-annotated, which limits their practical applicability. In real-world scenarios, these benchmarks often exhibit long-tail distributions, significantly impacting model performance. To address this challenge, we propose a novel method called **N**eural-**C**ollapse-**A**dvanced personalized **L**earning (NCAL), designed to learn features that conform to the same simplex equiangular tight frame (ETF) structure. NCAL introduces Text-modality Collapse (TC) regularization to optimize the distribution of text embeddings within the large language model (LLM) representation space. Notably, NCAL is model-agnostic, making it compatible with various architectures and approaches, thereby ensuring broad applicability. Extensive experiments demonstrate that NCAL effectively enhances existing works, achieving new state-of-the-art performance. Additionally, NCAL mitigates class imbalance, significantly improving the model’s generalization ability.